Browse > Article
http://dx.doi.org/10.15681/KSWE.2011.27.2.7

Formation of Oxidants and Removal of Dye Rhodamine B using PbO2 Electrode  

Park, Young-Seek (Faculty of Liberal Education, Daegu University)
Publication Information
Abstract
This study has been carried out to evaluate the performance of $PbO_2$ electrode for the purpose of degradation of N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), generation of ozone and decolorization of Rhodamine B (RhB) in water. The effect of the applied current (0.2~1.2 A), electrolyte type (NaCl, KCl and $Na_2SO_4$), electrolyte concentration (0.0~2.5 g/L) and solution pH (3~11) were evaluated. Experimental results showed that RhB and RNO removal were increased with the increase of current, NaCl dosage and decrease of pH. Ozone generation tendencies appeared with the almost similar to the RhB and RNO degradation, except of solution pH (Ozone generation was increased with increase of pH). Optimum current for RhB degradation and consumption of electric power was 1.0 A. The RhB degradation with Cl type electrolyte were higher than that with the sulfate type. Optimum NaCl dosage for RhB degradation was 1.0 g/L.
Keywords
Current density; Dye oxidation; Electrolyte; Hydroxyl radical; $PbO_2$ electrode;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 김광욱, 이일희, 김정식, 신기하, 정봉익(2002). 고온 소결된 촉매 산화물 전극의 재료 특성 및 유기물 분해능 연구. 공업화학, 13(3), pp. 285-290.
2 김동석, 박영식(2009a). 산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(1). 한국환경과학회지, 18(1), pp. 49-60.
3 김동석, 박영식(2009b). 산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(2). 한국환경과학회지, 18(1), pp. 61-72.
4 김동석, 박영식(2010). 직접 산화와 간접 산화용 전극의 dye 제거 성능 비교. 수질보전 한국물환경학회지, 26(6), pp. 963-968.
5 김재관, 최병선(1997). 폐수처리용 전착 이산화납전극의 전 해촉매활성 및 성능에 관한 연구. 화학공학, 35(2), pp. 218-224.
6 김재관, 최병선, 남종우(1996). 높은 산소과전압과 내구성의 이산화납전극 제조에 관한 연구. 공업화학, 7(6), pp. 1105-1114.
7 박영식(2007). 광-펜톤 산화반응을 이용한 Rhodamine B의 탈색. 수질보전 한국물환경학회지, 23(2), pp. 274-280.
8 박영식, 김동석(2010). BDD 전극을 이용한 OH라디칼 생성과 염료 분해에 미치는 운전인자의 영향. 한국환경과학회지, 19(9), pp. 1143-1152.
9 Amadelli, R., Battisti, De, Girenko, D. V., Kovalyov, S. V., and Velichenko, A. B. (2000). Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at $PbO_{2}$ electrodes: direct electrolysis and ozone mediated reactions compared. Electrochimica Acta, 46, pp. 341-347.   DOI   ScienceOn
10 Awad, H. S. and Galwa, N. Abo. (2005). Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/$PbO_{2}$ electrode in the presense of different conductive electrolyte and effect of various operating factors. Chemosphere, 61, pp. 1327-1335.   DOI   ScienceOn
11 Fryda, M., Matthee, S., Mulcahy, A., Hample, A., Schäfer, L., and Tröster, I. (2003). Fabrication and application of $Diachem^{(R)}$ electrodes. Diamond and Related Materials, 12(10/11), pp. 1627-2113.   DOI
12 Gattrell, M. and Kirk, D. W. (1993). A study of the oxidation of phenol at platinum and peroxidized platinum surfaces. J. Electrochem. Soc., 140, pp. 1534-1541.   DOI   ScienceOn
13 Kim, D. S. and Park, Y. S. (2008). Comparison study of dyestuff wastewater treatment by the coupled photocatalytic oxidation and biofilm process. Chemical Engineering Journal, 139, pp. 256-263.   DOI   ScienceOn
14 Kong, J., Shi, S., Kong, L., Zhu, X., and Ni, J. (2007). Preparation and characterization of $PbO_{2}$ electrodes doped with different rare earth oxides. Electrochimica Acta, 53, pp. 2048-2054.   DOI   ScienceOn
15 Li, M., Feng, C., Hu, W., Zhang, Z., and Sugiura, N. (2009). Electrochemical degradation of phenol using electrodes of Ti/$RuO_{2}$-Pt and Ti/$IrO_{2}$-Pt. J. of Hazard. Mat., 162, pp. 455-462.   DOI   ScienceOn
16 Ma, J. and Graham, J. D. (2000). Degradation of atrazine by manganese-catalyzed ozonation-influence of radical scavengers. Wat. Res., 34(15), pp. 3822-3828.   DOI   ScienceOn
17 Tahar, N. B. and Savall, A. (2009). Electrochemical removal of phenol in alkaline solution, contribution of the anodic polymerization on different electrode materials. Electrochimica Acta, 55, pp. 4809-4816.
18 Winder, R. A., Sousa, M. F., and Bertazzoli, R. (1998). Electrolytic removal of lead using flow-through cell with a reticulated vitreous cathode. J. Appl. Electrochem., 28, pp. 201-207
19 Yang, J., Jia, J., Liao, J., and Wang, Y. (2004). Removal of fulvic acid from water electrochemically using active carbon fiber electrode. Wat. Res., 38, pp. 4353-4360.   DOI   ScienceOn