• Title/Summary/Keyword: 1.9GHz

Search Result 942, Processing Time 0.028 seconds

Characteristics of Stacked Probe-Fed Sqare-Ring Microstrip Antenna (적층구조, 프로브 급전방식, 정사각형 링형태 마이크로스트립 안테나 특성에 관한 연구)

  • 이정연;이중근;김성철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.143-152
    • /
    • 2001
  • A method for miniaturization of microstrip patch antenna without degrading its radiation characteristics is investigated in this paper. It involves perforating the patch to form a microstrip square-ring antenna, and it's BW enhancement is investigated numerically and experimentally. A ring geometry introduces additional parameters to the antenna, and those are used to control impedances, resonance frequencies, and bandwidths. For a single square ring antenna, an increase of the size of perforation increases its input impedance, decreases the resonance frequency, and bandwidths. But it affects little on directivity of the antenna. To match the antenna to a transmission line and also enhance its bandwidth, the ring is stacked by a square patch or another square ring. Also numerically simulated results by the IE3D, and experimental data are compared for proof.

  • PDF

Wireless Vibration Measurement System Using a 3-Axial Accelerometer Sensor (3축 가속도 센서 기반의 무선 진동 측정 시스템)

  • Yoo, Ju-Yeon;Park, Geun-Chul;Jeon, Ah-Young;Kim, Cheol-Han;Kim, Yun-Jin;Ro, Jung-Hoon;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2011
  • In this study, a compact wireless vibration measurement system was developed using a 3-axial accelerometer in order to evaluate the vibration stimulation system. A low power microprocessor chip integrated with 2.4 GHz RF transceiver was used for the wireless data communication. To evaluate the system, the frequencies and accelerations from the vibration stimulation system were measured using an LVDT sensor and a vibration measurement system. The average frequency difference by the measurement system was less than 0.1 Hz, and the standard deviation of frequencies estimated by the LVDT sensor and the accelerometer was below 0.08 Hz. The developed system was applied to access a vibration stimulation system for the future study. The average acceleration difference of the central and peripheral point of the stimulation system was less than 0.0005 g(1 g=9.8 $m/s^2$), and the standard deviation of the acceleration was below 0.004 g, which shows the usefulness of the wireless vibration measurement system.

Monitoring of Rice Growth by RADARSAT and Landsat TM data (RADARSAT과 Landsat TM자료를 이용한 벼 생육모니터링)

  • Hong Suk-Young;Rim Sang-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2000
  • The objective of this study is to evaluate the use of RADARSAT and Landsat TM data for the monitoring of rice growth. The relationships between backscatter coefficients($\sigma$$^{0}$ ) of RADARSAT data and digital numbers (DN) of Landsat TM and rice growth parameters were investigated. Radar backscatter coefficients were calculated by calibration process and then compared with rice growth parameters; plant height, leaf area index (LAI), and fresh and dry biomass. When radar backscatter coefficient ($\sigma$$^{0}$ ) of rice was expressed as a function of time, it is shown that the increasing trend ranged from -22--20dB to -9--8dB as growth advances. The temporal variation of backscatter coefficient was significant to interpret rice growth. According to the relationship between leaf area index and backscatter coefficient, backscatter coefficient underestimated leaf area index at the beginning of life history and overestimated, at the reproductive stage. The same increasing trend between biomass and backscatter coefficient was shown. From these results, RADARSAT data appear positive to the monitoring of rice growth. Each band of time-series Landsat TM data had a significant trend as a rice crop grows during its life cycle. Spectral indices, NDVI[(TM4-TM3)/(TM4+TM3)] and RVI(TM4/TM2), derived from Landsat TM equivalent bands had the same trend as leaf area index.

  • PDF

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2

  • Park, Jong-Ho;Trippe, Sascha;Krichbaum, Thomas;Kim, Jae-Young;Kino, Motoki;Bertarini, Alessandra;Bremer, Michael;de Vicente, Pablo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.73.2-74
    • /
    • 2015
  • The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure - such as jets or winds from hot accretion flows - around Sgr A* caused by accretion of material from G2. The interferometric closure phases (which are zero if the spatial brightness distribution of the target is symmetric, and deviate from zero otherwise) remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ${\approx}2.5$ mas along the major axis, ${\approx}0.4$ mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, respectively; we thus probe spatial scales on which the jets of radio galaxies are suspected to convert magnetic into kinetic energy. As probably less than 0.2 Jy of the flux from Sgr A* can be attributed to accretion from G2, one finds an effective accretion rate ${\eta}M{\leq}1.5{\times}10^9kg/s{\approx}7.7{\times}10^{-9}M_{earth}/yr$ for material from G2. Exploiting the kinetic jet power-accretion power relation of radio galaxies, one finds that the rate of accretion of matter that ends up in jets is limited to $M{\leq}10^{17}kg/s{\approx}0.5M_{Earth}/yr$ less than about 20% of the mass of G2. Accordingly, G2 appears to be largely stable against loss of angular momentum and subsequent (partial) accretion at least on time scales ${\leq}1$ year.

  • PDF

An Electrical Properties Analysis of CMOS IC by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 CMOS IC의 전기적 특성 분석)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.535-540
    • /
    • 2017
  • The changes in the electrical characteristics of CMOS ICs due to coupling with a narrow-band electromagnetic wave were analyzed in this study. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The DUT was a CMOS logic IC and the gate output was in the ON state. The malfunction of the ICs was confirmed by monitoring the variation of the gate output voltage. It was observed that malfunction (self-reset) and destruction of the ICs occurred as the electric field increased. To confirm the variation of electrical characteristics of the ICs due to the narrow-band electromagnetic wave, the pin-to-pin resistances (Vcc-GND, Vcc-Input1, Input1-GND) and input capacitance of the ICs were measured. The pin-to-pin resistances and input capacitance of the ICs before exposure to the narrow-band electromagnetic waves were $8.57M{\Omega}$ (Vcc-GND), $14.14M{\Omega}$ (Vcc-Input1), $18.24M{\Omega}$ (Input1-GND), and 5 pF (input capacitance). The ICs exposed to narrow-band electromagnetic waves showed mostly similar values, but some error values were observed, such as $2.5{\Omega}$, $50M{\Omega}$, or 71 pF. This is attributed to the breakdown of the pn junction when latch-up in CMOS occurred. In order to confirm surface damage of the ICs, the epoxy molding compound was removed and then studied with an optical microscope. In general, there was severe deterioration in the PCB trace. It is considered that the current density of the trace increased due to the electromagnetic wave, resulting in the deterioration of the trace. The results of this study can be applied as basic data for the analysis of the effect of narrow-band high-power electromagnetic waves on ICs.

Estimation of Oceanic Total Precipitable Water from HALE UAV (고고도 장기체공무인기 운영고도에서 해양 총가강수량 추정)

  • Cho, Young-Jun;Jang, Hyun-Sung;Ha, Jong-Chul;Choi, Reno K.Y.;Kim, Ki-Hoon;Lim, Eunha;Yun, Jong-Hwan;Lee, Jae-Il;Seong, Ji-In
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • In this study, the oceanic Total Precipitable Water (TPW) retrieval algorithm at 16 km altitude of High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) is described. Empirical equation based on Wentz method (1995) that uses the 18.7 and 22.235 GHz channels is developed using the simulated brightness temperature and SeeBor training dataset. To do radiative simulation, Satellite Data Simulator Unit (SDSU) Radiative Transfer Model (RTM) is used. The data of 60% (523) and 40% (349) in the SeeBor training dataset are used to develop and validate the TPW retrieval algorithm, respectively. The range of coefficients for the TPW retrieval at the altitude of 3~18 km with 3 km interval were 153.69~199.87 (${\alpha}$), 54.330~58.468 (${\beta}$), and 84.519~93.484 (${\gamma}$). The bias and RMSE at each altitude were found to be about $-0.81kg\;m^{-2}$ and $2.17kg\;m^{-2}$, respectively. Correlation coefficients were more than 0.9. Radiosonde observation has been generally operated over land. To validate the accuracy of the oceanic TPW retrieval algorithm, observation data from the Korea Meteorological Administration (KMA) Gisang 1 research vessel about six clear sky cases representing spring, autumn, and summer season is used. Difference between retrieved and observed TPW at 16 km altitude were in the range of $0.53{\sim}1.87kg\;m^{-2}$, which is reasonable for most applications. Difference in TPW between retrieval and observation at each altitude (3~15 km) is also presented. Differences of TPW at altitudes more than 6 km were $0.3{\sim}1.9kg\;m^{-2}$. Retrieved TPW at 3 km altitude was smaller than upper level with a difference of $-0.25{\sim}0.75kg\;m^{-2}$ compared to the observed TPW.

Effect of Plasma Area on Frequency of Monostatic Radar Cross Section Reduction

  • Ha, Jungje;Shin, Woongjae;Lee, Joo Hwan;Kim, Yuna;Kim, Doosoo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2017
  • This work reports on the effect of plasma area on the frequency characteristics of the monostatic radar cross section (RCS) of a square metallic plate. A dielectric barrier discharge (DBD) plasma actuator consisting of 10 rings is proposed. The actuator is fabricated in three different configurations such that only three inner rings, seven inner rings, and all rings can be biased. By applying an 18-kV bias at 1 kHz, the three types of DBD actuators generate plasma with a total area of 16.96, 36.74, and $53.69cm^2$, respectively, in a ring or circular form. The experimental results reveal that when the DBD actuator is placed in front of a $20mm{\times}20cm$ conducting plate, the monostatic RCS is reduced by as much as 18.5 dB in the range of 9.41-11.65 GHz. Furthermore, by generating the plasma and changing the area, the frequency of maximum reduction in the monostatic RCS of the plate can be controlled. The frequency is reduced by nearly 20% in the X band when all rings are biased. Finally, an electromagnetic model of the plasma is obtained by comparing the experimental and full-wave simulated results.

A Study on Characteristics of the Transmission Line Employing Periodically Perforated Ground Metal on GaAs MMIC and Its Application to Highly Miniaturized On-chip Impedance Transformer Employing Coplanar Waveguide (GaAs MMIC상에서 주기적으로 천공된 홀을 가지는 접지 금속막 구조를 이용한 전송선로 특성연구 및 코프레너 선로를 이용한 온칩 초소형 임피던스 변환기에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1248-1256
    • /
    • 2008
  • In this paper, basic characteristics of transmission line employing PPGM (periodically perforated ground metal) were investigated using theoretical and experimental analysis.According to the results, unlike the conventional PBG (photonic band gap) structures, the characteristic impedance of the transmission line employing PPGM structure showed a real value, which exhibited a very small dependency on frequency. The transmission line employing PPGM structure showed a loss (per quarter wave length) higher by $0.1{\sim}0.2\;dB$ than the conventional microstrip line. According to the investigation of the dependency of RF characteristic on ground condition, the RF characteristic of the transmission line employing PPGM structure was hardly affected by the ground condition in the frequency lower than Ku band, but fairly affected in the frequency higher than Ku band, which indicated that coplanar waveguide employing PPGM structure was optimal for RF characteristic and reduction of size. Considering above results, impedance transformer was developed using coplanar waveguide with PPGM structure for the first time, and good RF characteristics were observed from the impedance transformer. In case that {\lambda}/4$ impedance transformer with a center frequency of 9 GHz was fabricated for a impedance transformation from 20 to10 {\Omega}$, the line width and length were 20 and $500\;{\mu}m$, respectively, and its size was only 0.64 % of the impedance transformer fabricated with conventional microstrip lines. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on MMIC.

A Study on the Frequency Allocation to the Maritime Mobile Satellite Services in the X band under ITU-R Activities (X 대역 해상이동위성업무 추가 주파수 분배를 위한 ITU-R 표준화 연구 동향 및 대응 방안 연구)

  • Oh, Dae-sub;Chang, Dae-Ig
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.127-130
    • /
    • 2015
  • ITU-R has conducted a studies for the frequency allocation to the maritime mobile satellite service (MMSS) in the 7375 - 7750 / 8025 - 8400 MHz under WRC-15 agenda item 1.9.2. In order to allocate a certain frequency bands to the new service, compatibility between new service and the existing services is ensured taking into account protecting the existing services form interference of new service. In this paper, we present current studies results of the frequency sharing studies between new allocation to MMSS and the existing services in the ITU-R. In addition, some proposals for allocating the 7/8 GHz frequency bands to MMSS are also considered for efficient spectral utilization with respect to preparing WRC-15.