• Title/Summary/Keyword: 1.8GHz 대역

Search Result 520, Processing Time 0.023 seconds

T-shaped Microstrip Monopole Antenna with a Pair of Slits for Dual-Band Operation (슬릿쌍을 이용한 이중 대역 T-형 마이크로스트립 모노폴 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.759-763
    • /
    • 2011
  • In this paper, a dual-band T-shaped microstrip monopole antenna with a pair of slits for 2.4/5.2/5.8-GHz wireless local area networks (WLANs) is proposed. A pair of T-shaped slits is loaded on a T-shaped monopole antenna fed by microstrip line in order to obtain dual-band operation as well as to reduce the antenna size. It is demonstrated from experimental results that the proposed antenna can cover all the required bands for WLAN. The measured impedance bandwidth for VSWR<2 is about 5.7% (2.37-2.51GHz) in the lower frequency band and about 28.8% (4.76-6.35GHz) in the higher frequency band. The measured peak gains are about 1.33 dBi to 1.66 dBi in the 2.4GHz band, 3.50 dBi to 3.95 dBi in the 5.25GHz band, and 2.06 dBi to 2.34 dBi in the 5.8GHz band.

LTE Spectrum Policy: Focused on the OECD 12 Countries (이동통신 LTE 주파수 정책: 주요국 사례를 중심으로)

  • Jun, Soo-Yeon;Jeong, In-Jun
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.1-18
    • /
    • 2014
  • Recently, many of the mobile network operators or telcos are introducing the LTE service in order to effectively cope with an explosive increasing mobile traffics due to an expansion of the use of smart phones. The 1.8GHz, 2.6GHz, and 800MHz band classes are most widely used for LTE. In particular, the 1.8GHz band class is the most useful one in terms of the reusability of the existing (2G) network, global harmonization, bandwidth, eco-system of equipments and devices, and so on. In recent years, major countries in the world have allocated the 1.8GHz band spectrum in a wide bandwidth unit suitable for the upcoming LTE-Advanced service. This paper surveyed the 1.8GHz band spectrum allocation policies of the 12 OECD countries, including Republic of Korea. From the survey, we have found that they rebuilt or refarmed the existing holders' bands, recovered the public (i.e., military)-use bands, and allocated the bands in a wide bandwidth and in an equal or similar size.

A Novel Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics by a Linear Monopole Antenna Combined with a Crossed Planar Monopole Antenna (선형 모노폴 안테나와 십자형 모노폴 안테나의 결합에 의한 ISM 2.45GHz/5.8GHz 이중대역 특성을 가지는 안테나 설계)

  • Shim, Jae-Ruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.515-519
    • /
    • 2015
  • In this paper, we suggested the novel monopole antenna for dual band characteristics by a linear monopole antenna combined with crossed planar monopole antenna. The target frequency is ISM(Industrial Scientific Medical) 2.45GHz/5.8GHz. The distinctive features of the proposed antenna in this paper is based on the slit in the surface of a crossed planar monopole for the dual band characteristics and the omnidirectional radiation patterns. The compact size of the proposed antenna is $36mm{\times}5.4mm{\times}5.4mm$. According to the simulation results, the bandwidth, the reflection coefficients below -10dB, of 2.45GHz and 5.8GHz are 150MHz and 1.43GHz, respectively. Consequently the proposed antenna structures is apply to the antenna for dual band characteristics.

Design of CMOS LC VCO with Linearized Gain for 5.8GHz/5.2GHz/2.4GHz WLAN Applications (5.8GHz/5.2GHz/2.4GHz 무선 랜 응용을 위한 선형 이득 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.59-66
    • /
    • 2005
  • CMOS LC VCO for tri-bind wireless LAN applications was designed in 1.8V 0.18$\mu$m CMOS process. PMOS transistors were chosen for VCO core to reduce flicker noise. The possible operation was verified for 5.8GHz band (5.725$\~$5.825GHz), 5.2GHz band (5.150$\~$5.325GHz), and 2.4GHz band (2.412$\~$2.484GHz) using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing technique was used for capacitance linearization and PLL stability improvement. VCO core consumed 2mA current and $570{\mu}m{\times}600{\mu}m$ die area. The phase noise was lower than -110dBc/Hz at 1MHz offset for tri-band frequencies.

Dual Band-notched Monopole Antenna for 2.4 GHz WLAN and UWB Applications (이중대역 저지특성을 가지는 2.4 GHz WLAN 및 UWB 겸용 모노폴 안테나)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In the paper, a dual band-notched monopole antenna is proposed for 2.4 GHz WLAN (2.4 ~ 2.484 GHz) and UWB (3.1 ~ 10.6 GHz) applications. The 3.5 GHz WiMAX band notched characteristic is achived by a pair of L-shaped slots instead of the previous U-shaped slot on the center of the radiating patch, whereas the 7.5 GHz band notched characteristic is achived by C-shaped strip resonator placed near to the microstrip feed line. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) is 8.62 GHz (2.38 ~ 11 GHz) which is sufficient to cover 2.4 GHz WLAN and UWB band, while measured band-notched bandwidths for 3.5 GHz WiMAX and 7.5 GHz bnad are 1.13 GHz (3.15 ~ 4.28 GHz) and 800 MHz (7.2 ~ 8 GHz) respectively. In particular, it has been observed that antenna has a good omnidirectional radiation patterns and higher gain of 2.51 ~ 6.81 dBi over the entire frequency band of interest.

Structural Modification of Crossed Planar Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics (ISM 2.45GHz/5.8GHz 이중대역 특성을 위한 십자형 평판 모노폴 안테나의 구조 변경)

  • Shim, Jaeruen;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • This study presents the structure design of antenna to have the dual band characteristics in a desired frequency band through the structural modification of an antenna structure. For the experiment, a wideband crossed planar monopole antenna was used. The target frequency band was set to ISM 2.45GHz/5.8GHz. To give the properties, an additional antenna element was added to the crossed planar monopole antenna, which is a main body of the antenna. And then structural adjustment parameter was set to change the length(shape) of the antenna. Various simulations were conducted to find the dual band characteristics in the desired frequency band. The simulations brought forth the antenna bandwidth above the normal values for ISM 2.45GHz/5.8GHz. The structural adjustment parameter introduced in this study for structural modification of an antenna can be useful in developing an antenna featured with dual band(multiband) characteristics.

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR (스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Lee, Sang-Min;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1078-1091
    • /
    • 2011
  • In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

Narrow Band-pass Filter with Dual-band Using Pseudo-Combline (Pseudo-Combline을 이용한 이중대역 협대역 대역통과 여파기)

  • Yoon, Ki-Cheol;Lee, Hyun-Wook;Li, Meng;Lee, Jae-Yeong;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.84-90
    • /
    • 2011
  • In this paper, a dual-band pseudo-combline narrow bandpass filter is proposed. The proposed bandpass filter adopts the open resonant stubs and the proposed bandpass filter can be used for ITS(Intelligent Transport System) and X-band satellite systems application. The proposed bandpass filter has the insertion and return losses of 1.72 dB and 15.5 dB at the bandwidth of 3.6 % and center frequency of 5.8 GHz, respectively. Also, the second operating frequency band for insertion and return losses are 1.92 dB and 16.3 dB at the bandwidth of 3% and center frequency of 8.5 GHz, respectively.

A Dual-band Compact Folded Patch Antenna with Improved Isolation Characteristics (격리도 특성이 개선된 이중 대역 소형 평면 패치 안테나)

  • 김태영;정종호;박동국;박익모
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.219-222
    • /
    • 2002
  • 본 논문에서는 이중 대역 소형 평면 패치 안테나를 이용하여 5.6GHz 대역과 5.8GHz 대역에서 동작하는 이중 대역 안테나를 제안하였다. 안테나의 격리도 특성을 최소화하기 위해 서로 다른 급전선 구조를 이용하였고, 급전부에 개방스터브를 사용하여 VSWR $\leq$2를 기준으로 5.48 GHz 대역과 5.87 GHz대역에서 각각 3.1%와 2.73% 이상의 대역폭을 얻었으며, 격리도 특성은 두 대역에서 평균적으로 -27㏈를 얻었다

  • PDF

Design of the 1.8GHz Strip-line Isolator with high attenuations at harmonic band (고조파 대역에서 높은 감쇄를 갖는 1,8GHz 대역 스트립라인 아이솔레이터 설계)

  • Yoo, Young-Cheol;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.795-802
    • /
    • 2011
  • In this paper, the detailed design procedure of the Y-junction stripline isolator self-contained the filter circuit in the center conductor in order to maximize attenuations below value of 30 dB at 3rd order harmonics is presented. The HFSS is used to simulate 1.8GHz band isolator and the results are compared with the measurement data. These results confirms that the designed stripline isolator is effective in achieving high attenuation above -30 dB at 3rd order harmonics. And it is obtained that the harmonic band of isolator using the ferrite of 0.16T is moved far from operating frequency more 1.2 GHz than one using the ferrite of 0.12T.