• Title/Summary/Keyword: 1-octen-3-ol

Search Result 70, Processing Time 0.033 seconds

Monitoring of the Changes in Volatile Flavor Components in Oriental Melon Wine Using SPME (SPME를 이용한 참외와인의 휘발성 향기성분의 모니터링)

  • Jo, Yong-Jun;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • This study was conducted to investigate changes in the main volatile flavor components of oriental melon during the process of alcohol fermentation via SPME (solid phase micro extraction). The flavor components of oriental melon were shown to have mainly included melon and green flavors. The green flavor was identified to be nonanal, 1-butanol, 1-octen-2-ol and benzene, and its relative concentration was shown to be 16.66%. The nonanal concentration was shown to have been reduced among the green-flavor components, but no significant change in remaining components was observed. Mainly, sweet flavor tended to increase, and the relative concentration of benzene was particularly shown to have increase by 25.58%, accounting for the highest relative concentration. The amount of green-flavor components, except for 1-butanol, was shown to have significantly decrease after alcohol fermentation. Then, no component of green-flavor, which causes an offensive smell, was found during fermentation and aging. Meanwhile, the volatile flavor components, which are consist of acids, were shown to have been produced during alcohol fermentation. In particular, octanoic acid, which causes off-flavor, was shown to be 60.99%, a very high relative concentration during the aging stage. In addition, acetic acid with a pungent sour flavor tended to be produced. A further study on the improvement of flavor in the production of oriental melon wine is required.

Effect of Refrigerated and Thermal Storage on the Volatile Profile of Commercial Aseptic Korean Soymilk

  • Kim, Hun;Cadwallader, Keith R.;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.76-85
    • /
    • 2009
  • This study determined the effect of refrigerated and thermal storage on the volatile profile of commercial aseptic soymilk. Volatile components in commercial aseptic soymilk stored either under refrigerated ($4^{\circ}C$) or thermal ($55^{\circ}C$) conditions for 30 days were periodically analyzed by combined solvent-assisted flavor evaporation-gas chromatography-mass spectrometry (SAFE-GC-MS). The concentrations of most of the volatile components, including aldehydes, ketones, alcohols, acids, nitrogen- and sulfur-containing compounds, alkylfurans, furan derivatives and phenolic compounds, were affected to a greater extent by thermal storage compared with refrigerated storage. Profound increases in some volatile compounds with low odor detection thresholds, such as hexanal, octanal, (E)-2-octenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 3-ethyl-2,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, 2-pentylfuran, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, dimethyl trisulfide, guaiacol, 4-vinylguaiacol and 4-vinylphenol, were observed in thermal stored soymilk. The volatile profile changes caused by thermal storage may influence the aroma quality of thermal-stored aseptic soymilk.

Identification and Antibacterial Activity of Volatile Flavor Components of Cordyceps Militaris

  • Park, Mi-Ae;Lee, Won-Koo;Kim, Man-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 1999
  • Flavor characteristics of raw Cordyceps militaris significatntly different from those of dried one. In the case of raw Cordyceps militaris , major flavor components were composed of 5 alcohols, 3 ketones, 4 phenols, 9 alkanes , and 3 alkenes. The major alcohol was 1-octen-3-ol(22.56%, 1147.3% ng/ml), which contributed to the characteristic green flavor. Ketones (3-ocatone, inparticular )were present in the highest concentration in raw Cordyceps militaris . In contrast, major flavor components of dried Cordyceps militaris were composed of 4 alcohols, 4 ketones, 3 furans, 4 pyrizines, 2 dithiazines, 5 phenols , 8alkenes , 17 alkanes, and 8 fatty acids. Dried Cordyceps militaris had unique sweet aroma of sesame as wella s a milky flavor. Green or fruit flavor were rarely detected . In alkanes , 10 cosanes, component fo wax were present. Typical flavor components of alkanes such as $\beta$-caryophyllen and Δ-cadinene were also detected. Fatty acids of dried Cordyceps militaris ranged from myristic acid (14 :0) to linoleic acid (18 ; 2). The sweet aroma of dried Cordyceps militaris was mostly due to pryazines, dithaiazines, and furans. Two dithaizines were identified and characteristics of these flavor components was a roasted bacon flavor. Strong antibacterial acitivity was observed toward Vibrio spp. such as V. vulnificus, V.cholerae, V. parahaemlyticus. Relatively high antibacterial acitivity was shown toward Bacillus subtilis , B,cereus, Staphyllococcus aureus, and Corynebacterium xerosis.

  • PDF

Comparison of Volatile Compounds from Thymus Magnus Nakai by Three Different Extraction Methods (추출방법에 따른 섬백리향의 휘발성 향기성분 비교)

  • Lee, Sa Eun;Kim, Songmun;Lim, Won Churl;Kang, Ki Choon;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • The purpose of this study was to analyse the volatile components of Thymus magnus Nakai extracted by different extraction methods and reproduce scent close to original plant based on the results. For this purpose, the essential oil of T. magnus was extracted by supercritical fluid extraction (SFE), water and steam distillation (WSD) and simultaneous steam distillation and extraction (SDE) methods. The compositions of the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Consequently, linalool (0.1%) and trans-sabinene hydrate (0.9%) contents in the essential oil extracted by SFE method of $40^{\circ}C$ - 400 bar condition were relatively higher than compositions of the essential oil extracted by different conditions. The contents of borneol (3.82%), terpinen-4-ol (0.3%) and caryophyllene oxide (2.2%) were relatively higher at $50^{\circ}C$ - 400 bar and the contents of ${\beta}$-bisabolene (5.88%), 1-octen-3-ol (0.31%), caryophyllene (2.91%), p-cymene (2.04%) and ${\gamma}$-terpinene (0.52%) were extracted relatively higher at $50^{\circ}C$ - 300 bar. The compositions of the essential oil extracted by SFE method of $50^{\circ}C$ - 200 bar condition contained relatively higher contents of thymol (77.63%) and carvacrol (5.65%). The contents of ${\alpha}$-bisabolol (0.17%), caryophyllene (6.46%), cis-${\alpha}$-bisabolene (1.52%) and ${\beta}$-bisabolene (20.65%) in the essential oil extracted by WSD method were relatively higher than compositions of the essential oil extracted by SFE method, and by SDE method we couldn't obtained essential oil. The results of this study could be utilized to reproduce scent close to original scent of T. magnus.

Studies on Volatile Compounds in Lipoxygenase Deficient-soybean and Its Products (Lipoxygenase 결핍 콩과 그 가공품의 휘발성 성분 분석)

  • 김수희;이양봉;황인경
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.2
    • /
    • pp.118-124
    • /
    • 2000
  • Lipoxygenase(LOX) in soybeans is responsible for beany flavors which limit the wide utilization of soybeans to foods. This study was conducted to analyze beany flavor compounds of the normal Hwagkeumkong and LOX-deficient soybean cultivars, Jinpumkong which lacks L-2, L-3, and Jinpumkong 2 which lacks all L-1, L-2, L-3. Using the combination of dynamic headspace sampling and gas chromatography-mass selective detector(DHS-GC-MSD) for analyzing volatile compounds, hexanal and hexanol were identified in whole soy flour of all three soybena cultivars. Hwangkeumkong had more volatile compounds than Jinpumkong and Jinpumkong 2 in defatted soy flour. Hexanal and acetic acid were identified in soy milk of all three soybean cultivars but Hwangkeumkong had more volatile compounds than Jinpumkong 2. From the analysis with a static headspace sampling(SHS) and GC-MSD the major compounds were hexanal, acetic acid, 1-hexanol, and 1-octen-3-ol. The content of acetic acid was similar among three cultivars. But contents of hexanal and pentanal in Jinpumkong 2 were less than that of Jinpumkong and Hwangkeumkong. Using GC-FID, Jinpumkong 2 had less contents of hexanal and pentanol than Hwangkeumkong in whole soy flour and defatted soy flour. In this study, LOX-deficient soybean cultivars showed less hexanal, pentanol and other compounds than the normal Hwangkeumkong. However quite amount of beany flavor compounds were identified in Jinpumkong and Jinpumkong 2. So further studies are required to characterize LOX isozymes, to understand the mechanisms of beany flavors production, and to develop some other methods for removing beany flavor.

  • PDF

Composition and Anti-cholinesterase Activity of the Essential Oil Obtained from Korean Elsholtzia ciliata (한국산 향유로부터 얻은 정유의 조성과 콜린에스테라제 억제활성)

  • Song, Byong-Min;Choi, Jae Sue;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • The present GC-MS analysis elucidated the composition of the essential oil obtained from the herb of Elsholtzia ciliata(Lamiaceae). Overall, the content of monoterpenes was higher than that of sesquiterpenes. Monoterpenes rich in this oil were carvone (peak area, 26.180%), camphor (2.304%), borneol (9.974%), dihydrocarveol (3.296%), ${\alpha}$-citral (=geranial, 4.025%), geranic acid (2.961%), while sesquiterpenes occupying relatively higher percentage were ${\alpha}$-humulene (0.918%), (-)-spathulenol (0.974%), ${\alpha}$-caryophyllene oxide (2.014%), globulol (1.362%), ${\beta}$-caryophyllene oxide (0.750%). The components characterizing this oil were 1-octen-3-ol, acetophenone, and butylated hydroxytoluene. The $IC_{50}$ of this oil on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were $42.37{\mu}g/ml$ and $121.34{\mu}g/ml$, respectively, suggesting that the essential oil of E. ciliata may be active on the memory loss of patients suffering from Alzheimer's disease.

The Effect of Roasting Temperature on the Formation of Volatile Compounds in Chinese-Style Pork Jerky

  • Chen, W.S.;Liu, D.C.;Chen, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.427-431
    • /
    • 2002
  • The purpose of this work was to study the effect of roasting temperature on the production of volatile compounds in Chinese-style pork jerky. The pork jerky was roasted by far-infrared grill at $150^{\circ}C$ or $200^{\circ}C$ for 5 min. The analysis of volatile compounds using a Likens-Nickerson apparatus coupled to a gas chromatograph and a mass spectrometer enabled us to identify 21 volatile compounds. The results showed that the volatile compounds coming from pork jerky can be divided into two groups in accordance with their possible origins. The first group of volatile compounds derived from oxidation of lipid included hexanal, ethylbenzene, nonanal, benzaldehyde, 2,4-decadienal, 1-octen-3-ol, octadecanal, and 9-octadecenal. The second group of volatile compounds generated from degradation of natural spices included 1,8-cinene, 4-terpineol, ${\alpha}$-terpineol, e-anethole, methyl-eugenol, panisaldehyde, elemol, eugenol, methyl-isoeugenol and myristicin. Significant differences (p<0.05) were found between 2 different roasted temperatures at levels for all volatile compounds.

Effect of Fresh Garlic on Lipid Oxidation and Microbiological Changes of Pork Patties during Refrigerated Storage

  • Park, Sung Yong;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effects of two levels (1.4 vs 2.8%) of fresh garlic on lipid oxidation and microbial growth in pork patties were evaluated. Hunter color (L, a, b), pH, thiobarbituric acid reactive substances (TBARS), oxidative volatile compounds, total bacteria and Enterobacteriaceae in the pork patties with or without fresh garlic were measured during storage at $4^{\circ}C$. Addition of fresh garlic decreased redness (a), while increased pH and yellowness (b) values of the fresh pork patties were observed, regardless of the levels added. The TBARS values of the pork patties were increased with the addition of fresh garlic (p<0.05). Similar results were observed in oxidative volatile compounds. A total of 13 volatile compounds were detected in the patties (5 sulfur-containing compounds, including allyl mercaptan, allyl methyl sulfide, diallyl sulfide, methyl-(E)-propenyl-disulfide, and diallyl disulfide, and the 8 other oxidative compounds, including 1-pentanol, hexanal, 1-hexanol, heptanal, (E)-2-heptenal, 1-octen-3-ol, (E)-2-octenal and nonanal). Fresh garlic accelerated development of oxidative products in the pork patties, especially hexanal and the total oxidative volatile compounds. However, the addition of 1.4 and 2.8% of fresh garlic inhibited the growth of total bacteria and Enterobacteriaceae, indicating low total bacterial counts and Enterobacteriaceae than the controls.

Aroma Characteristics of Byeolmijang with Optional Ingredients (부재료 첨가에 따른 별미장의 향기특성)

  • Woo, Koan-Sik;Han, Seo-Young;Yoon, Hyang-Sik;Lee, Jun-Soo;Jeong, Heon-Sang;Kim, Haeng-Ran
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.738-746
    • /
    • 2006
  • Aroma compounds in four different Byeolmijang made from optional ingredient addition were extracted by SDE (simultaneous steam distillation extraction) and analyzed with GC (gas chromatography) and GC/MS (mass-spectrometry). The major aroma compounds in the four different Byeolmijang during aging were 1-octene-3-ol, hexanal, benzeneacetaldehyde, benzaldehyde, fufural, pyrazine, furan and phenol type compounds. Generally, benzeneacetaldehyde, benzaldehyde, fufural and phenol type compounds were increased during aging. On the other hand, 1-octen-3-ol, hexanal and furan were decreased during aging. Furfural, 2-furanmathanol and benzeneacetaldehyde in Sanghwangjang, 3-methyl-1-butanol, phenol and 1H-indole in Mujang, hexanal, 1-octen-3-ol and 2,4-decadienal in Bizijang and hexanal, tetramethylpyrazine and 2-methoxy-4-vinylphenol in Jigeumjang were identified as major aroma compounds, respectively. Generally, the major aroma compound in four different Byeolmijang with optional ingredient was similar with control and pyrazine, furan and phenol type compounds were decreased to addition with optional ingredient. The major aroma compound in Sanghwangjang with optional ingredient (onion) were 1-hexanol and 2,5-dimethylthiophene and the major aroma compounds were 1,2,4-trithiolane and 2-buthyl-2-octenal in Mujang with optional ingredient (Letinus edodes). Furfural, benzaldehyde, benzeneacetaldehyde, 1,2,4-trithiolane and lenthionine were detected in Bizijang due to the addition of powdered Letinus edodes. Linaool and ${\beta}-lonone$ were detected in Jigeumjang due to the addition of powdered red pepper.

Effect of Maillard reaction with xylose, yeast extract and methionine on volatile components and potent odorants of tuna viscera hydrolysate

  • Sumitra Boonbumrung;Nantipa Pansawat;Pramvadee Tepwong;Juta Mookdasanit
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.393-405
    • /
    • 2023
  • The aim of this research was to enhance the flavor of visceral extracts from skipjack tuna. Flavor precursors and the optimum condition for the Maillard reaction were determined. The flavor extract was prepared from the tuna viscera using Endo/Exo Protease controlled in 3 factors; temperature, enzyme amounts and incubation time. The optimal condition for producing tuna viscera protein hydrolysate (TVPH) was 60℃, 0.5% enzyme (w/w) and 4-hour incubation time. TVPH were further processed to tuna viscera flavor enhancer (TVFE) with Maillard reaction. The Maillard reactions of TVFE were conducted with or without supplements such as xylose, yeast extract and methionine. The Maillard volatile components were analyzed with gas chromatography-mass spectrometry. Sixteen volatiles such as 2-methylpropanal, methylpyrazine, 2,5-dimethylpyrazine, dimethyl disulfide and 2-acetylthaizone were newly formed via Maillard reaction and the similarity of volatile contents from TVPH and TVFE were virtualized using Pearson's correlation integrated with heat-map and principal component analysis. To virtualize aromagram of TVPH and TVFE, odor activity value and odor impact spectrum (OIS) techniques were applied. According to OIS results, 3-methylbutanal, 2-methylbutanal, 1-octen-3-ol 2,5-dimethylpyrazine, methional and dimethyl trisulfide were the potent odorants contributed to the meaty, creamy, and toasted aroma in TVFE.