• Title/Summary/Keyword: 1-octen-3-ol

Search Result 71, Processing Time 0.029 seconds

Volatile Compounds of Ascidian, Halocynthia roretzi

  • CHOI Byeong-Dae;HO Chi-Tang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.761-769
    • /
    • 1995
  • About 2.1g of pale yellow flavor concentrate was obtained from 10kg of chopped fresh ascidians through a Likens-Nickerson steam distilllation/solvent extraction. These concentrates could be fractionated to neutral $(91.5\%),\;basic\;(1.0\%),\;phenolic\;(3.2\%),\;and\;acidic\;(4.3\%)$ fractions. Total 65 volatile compounds were identified from those concentrates. The neutral fraction was representative flavor fraction which showed a similar flavor of total steam distillates of ascidian. The major compounds $(38.2\%\;of\;neutral\;fraction)$ were identified as carbon atoms 8 to 10 of alcohols. Among these volatile alcohols, 1-octanol, 2,7-decadien-1-o1, 3-octen-l-01, 7-decen-l-ol, and l-decanol were the dominent compounds found in neutral fraction. But the basic, phenolic, and acidic fractions differs from ascidian steam distillates flavor.

  • PDF

Volatile Compounds in the Oxidation of Unsaturated Fatty Acids Caused in Off-flavor of Porcine Liver by HS-SPME (Headspace solid-phase microextraction(HS-SPME)를 이용한 간의 비린내불쾌취에 기인하는 불포화지방산 산화생성물의 휘발성성분)

  • Im, Sung-Im;Choi, Sung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.359-365
    • /
    • 2003
  • Headspace solid-phase microextraction(HS-SPME) was used to isolate the off-flavor volatile compounds, which are formed during the oxidation of porcine liver and unsaturated fatty acids in porcine liver induced by iron. Three fibers for HS-SPME method development were tested, and the polydimethylsiloxane/divinylbenzene(PDMS/DVB) fiber was selected as providing the best detection of analyzed compounds. In the oxidized arachidonic acid, the major compounds identified were hexanal, 1-octen-3-one(metallic), (Z)-4-heptenal, (E)-2-octenal, 1-octen-3-ol(mushroom), (Z)-2-nonenal (cardboard-like), and (E,E)-2,4-decadienal(fatty, oily). In the oxidized linolenic acid, the major ones were (E,E)-2,4-heptadienal(fishy), (E,E)-3,5-octadien-2-one and (E,Z)-2,6-nonadienal. Moreover, those of th oxidized porcine liver with iron were hexanal, 1-octen-3-one, (Z)-4-heptenal, (E,Z)-2,4-decadienal and (E,E)-2,4-decadienal. These results showed that the fishy and metallic off-flavor in porcine liver were due to the oxidation of unsaturated fatty acids in porcine liver.

Studies on Volatile Flavor Compounds of Soy Sauce Residue (간장박의 휘발성 향기성분에 관한 연구)

  • Cha, Yong-Jun;Wang, Wenfeng;Cha, Ha-Ram
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1755-1761
    • /
    • 2016
  • Volatile flavor compounds in soy sauce residue (SSR) and acid hydrolysate of SSR (AHSSR) were analyzed by solid phase micro extraction (SPME)/gas chromatography (GC)/mass spectrometry (MSD) methods. A total of 79 compounds were detected in samples (66 SSR and 60 AHSSR). Quantitatively, alcohols (433.37 ng/g), aldehydes (273.01 ng/g), esters (236.80 ng/g), and aromatic hydrocarbons (180.66 ng/g) were dominant in the volatiles of SSR, whereas furans (249.27 ng/g) were only dominant in AHSSR (P<0.05). Among these, four esters, 3-methylbutyl acetate (banana/pear-like), ethyl 3-methyl butanoate (fruity), ethylbenzene acetate (wine-like), and ethyl 3-methyl butanoate (apple-like), three alcohols, 3-methyl-1-butanol (fruity/whisky-like), 2-phenylethanol (floral/sweet), and 1-octen-3-ol (mushroom-like), four aldehydes, (E)-2-phenyl-2-butenal (chocolate-like), benzaldehyde (almond-like), 3-methylbutanal (malty), and 2-phenylacetaldehyde (floral), four aromatic hydrocarbons, 4-ethyl-2-methoxyphenol (smoky/soy sauce-like), 4-ethylphenol (medicine-like), 4-vinyl-2-methoxyphenol (woody), and phenol (woody), and two furans, furfural (almond-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), were major compounds in SSR, whereas seven compounds, including furfural, 5-methylfurfural (almond-like), 3-methyl-1-butanol, 2-phenylethanol, 4-ethyl-2-methoxyphenol, 3-methylbutanal, and benzaldehyde were major compounds in AHSSR.

Tour of Truffles: Aromas, Aphrodisiacs, Adaptogens, and More

  • Allen, Kirsten;Bennett, Joan W.
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.201-212
    • /
    • 2021
  • Truffles are the fruiting bodies of ascomycete fungi that form underground. Truffles are globally valued, culturally celebrated as aphrodisiacs, and highly sought-after delicacies in the culinary world. For centuries, naturalists have speculated about their mode of formation, and in cultures surrounding the Mediterranean Sea, many species have been prized as a delectable food source. Truffle fruiting bodies form underground and emit a variety of volatile organic compounds (VOCs). Truffle volatiles are believed to have evolved to attract animals that disperse their spores. The main VOCs identified from truffles include sulfur compounds, such as dimethyl sulfide (DMS) and dimethyl disulfide (DMDS); in addition, 1-octen-3-ol and 2-methyl-1-propanol have been found in most truffle species. Humans use pigs and dogs trained to detect truffle VOCs in order to find these prized subterranean macrofungi. Truffles have pharmacological potential, but until more reliable cultivation methods become available their high price means they are unlikely to see widespread use as medicinals.

Aroma Characteristics of Applemint (Mentha rotundifolia(L.) Huds) with Different Extraction Methods (추출방법에 따른 애플민트의 향기특성)

  • Min, Young-Kyoo;Yoon, Hyang-Sik;Kim, Ji-Yeoun;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1465-1470
    • /
    • 1999
  • Aroma was extracted from Applemint(Mentha rotundifolia(L.) Huds) with SDE(simultaneous distillation and extraction), SFE(supercritical fluid extraction) and headspace method and the compounds of aroma were tentatively identified with GC-MS. The functionality of aroma compounds were determined with GC-olfactometry. Total 67 compounds were identified. Among them, 39 compounds were determined from SDE, 42 from SFE and 16 from headspace extract. Many terpene compounds were extracted with SDE and headspace methods but hydrocarbones with SFE. The major constituents of aroma obtained from SDE and SFE, were piperitenone oxide, germacrene-D and trans sabinene hydrate, but those from headspace method were 3-octanol, 1,8-cineol, camphene and benzeneacetaldehyde. Results of sniffing test, determining characteristics and strength of aroma showed that the major constituents of SDE extract were refreshing sweet and apple-like(ethyl-2-methyl butanoate), sweet and fruity-like$({\alpha}-thujene)$, fresh mushroom-like(1-octen-3-ol, 3-octanol), and bitter herb-like$({\delta}-cadidene)$. Major constituents of aroma extracts obtained from headspace method were alcoholic, refreshing sweet and apple-like(ethyl 2-methyl butanoate), unpleasant chemical, and bitter herb and grassy-like(camphene).

  • PDF

The change in C8 and C9 volatile compounds according to the drying conditions of Pleurotus citrinopileauts and P. djamor (노랑느타리와 분홍느타리의 건조조건에 따른 C8과 C9 향기성분의 변화)

  • Minji Oh;Minseek Kim;Ji-Hoon Im;Youn-Lee Oh
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.222-227
    • /
    • 2023
  • Mushrooms have a unique taste and aroma, so in the processing of mushroom products with other ingredients, a separate pre-processing step is often taken to eliminate the mushroom aroma. In this study, we analyzed the changes in the concentration of volatile compounds according to drying conditions to promote the activation of processing using the fruiting bodies of yellow oyster mushrooms(Pleurotus citrinopileatus) and pink oyster mushrooms(P. djamor). The caps and stipes of yellow oyster and pink oyster mushrooms were separated and freeze-dried at -70℃ for 120 hours. Subsequently, they were hot air-dried at temperatures of 40, 50, 60, and 70℃ for 24, 24, 16, and 12 hours, respectively. The dried samples were pulverized and quantitatively analyzed by SPME-GC-MS. In the case of yellow oyster mushrooms, the concentration of t-2-nonenal in caps and stipes during freeze-drying was 164.43 ㎍/g d.w. and 174.80 ㎍/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 0.35~3.41 ㎍/g d.w. and 0.98~59.88 ㎍/g d.w. In a similar manner, for pink oyster mushrooms, the concentration of 1-octen-3-ol during freeze-drying in caps and stipes was 31.05 ㎍/g d.w. and 176.17 ㎍/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 1.59~9.66 ㎍/g d.w. and 1.96~15.77 ㎍/g d.w. Furthermore, most volatile compounds showed a tendency to decrease in concentration as the temperature during hot air-drying increased.

Effects of Added Corn Oil on the Formation of Volatile Flavor Compounds in Dry Shrimp During Roasting Process (볶음 과정중 첨가한 옥수수 기름이 마른 새우 향기성분 형성에 미치는 영향)

  • Joo, Kwang-Jee;Kang, Mi-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.655-660
    • /
    • 2003
  • Flavor components of dry shrimp, roasted-dry shrimp and roasted-dry shrimp with corn oil (w/w: 10%, 25%) were investigated to evaluate the effects of added corn oil on the formation of volatile components in dry shrimp during roasting process. The identified volatile included 20 nitrogen-containing compounds (7 pyrazines, 7 pyridines 3 pyrroles, others) 14 aldehydes, 5 alcohols, 4 ketones and 11 others. The largest quantities of lipid-derived products hexanal, nonanal, 2-pentylfuran, 1-octen-3-ol, trans-2-decenal, trans, cis-2,4-decadienal, trans, trans-2,4-decadienal were detected in the roasted-dry shrimp samples with corn oil. The lipid-derived aldehydes might be involved in the formation of 3- ethyl-2,5-dimethylpyrazine, 2,3,5-trimethyl-6- ethylpyrazine, 2-ethyl-5,6-dimethylpyrazine, 2,3,5- trimethylpyrazine, 3- ethyl-2,6-dimethylpyridine, 2-propylpyridine, ben-zopyrrole and the others. The nitrogen-containing compounds seem to be a major flavor component and responsible for characteristic flavor in roasted-dry shrimp with corn oil.

Aroma constituents, ergosterol and proximate analysis of Neolentinus lepideus (잣버섯의 일반성분 및 에르고스테롤, 향기성분)

  • Jang, Myoung-Jun;Kim, Jeong-Han;Ju, Young-Cheol
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.73-76
    • /
    • 2014
  • Nutritional and functional components, such as approximate, and volatile flavor compounds, ergosterol and proximate analysis of artificially cultivated Neolentinus lepideus were analyzed. The common elements of N. lepideus were analyzed to have 6.3% crude ash, 19.1% crude protein, 1.9% crude fat, and 8.9% crude fiber, respectively. The volatile flavor compounds of N. lepideus were characterized as 3-Octanone, 3-Octanol and 1-Octanol. The ergosterol content of N. lepideus was shown to be 145.9 ppm.

Characteristics of Chunggugjant Produced by Bacillus subtilis DC-2 (Bacillus subtilis DC-2로 제조한 청국장의 특성)

  • 정영건;최웅규;지원대
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.846-851
    • /
    • 1998
  • Characteristics of chunggugjang fermented by Bacillus subtilis DC-2, a pigment producing bacterium, were investigated. More water soluble browning materials were produced with fermentation time. The pH was gradually alkalized. The contents of amino nitrogen were extraordinarily increased with fermentation time. Both strength and hardness were gradually decreased during fermentation. Total 30 volatile compounds were identified in the chunggugjang fermented by B. subtilis DC-2. The pyrazines were detected more than any other compounds. The good aroma of the chunggujang fermented by B. subtilis DC-2 was considered to be contributed by tetramethylpyrazine, trimethylpyrazine, 1-octen-3-ol, 2, 5-dimethylpyrazine and guaiacol.

  • PDF

Quality Characteristics and Flavor Compounds of Geumsan Perilla Leaves Cultivated in Greenhouse and Field (온실재배와 노지재배한 금산 깻잎의 품질 특성과 향기성분)

  • 현광욱;구교철;장정호;이재곤;김미리;이종수
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • Quality and flavor compounds of perilla loaves cultivated in greenhouse(May) and field (August) in Geumsan province were investigated and compared. All perilla leaves contained 4.0% crude protein and 0.8% crude lipid. Crude flavonoid contents of perilla leaves cultivated in greenhouse and field showed 25.2% and 26.5%, respectively and each crude saponin content was 2.7% and 2.8%. Pretense activity were showed 11.8 unit in ethanol extracts and 7.1 unit in water extracts of perilla leaves cultivated in field. Hardness and chewness of bottom parts of field-perilla leaves were higher than those of top and middle part, whereas the cohesiveness of top parts and middle parts of perilla leaves were higher than that of bottom part. Furthermore, texture properties of greenhouse-perilla leaves were similar with those of field-perilla leaves except chewness. Nine kinds of flavor compounds such as 1-octen-3-ol, linalool, ${\beta}$-caryophyllene, ${\alpha}$-caryophylene, ${\alpha}$-farnesene, perilla ketone, nerolidol, eugenol, ${\alpha}$-cadinol were identified in greenhouse-perilla and field-perilla leaves, showing that main flavor compound was perilla ketone.