DOI QR코드

DOI QR Code

Tour of Truffles: Aromas, Aphrodisiacs, Adaptogens, and More

  • Allen, Kirsten (Department of Plant Biology, Rutgers, New Use Agriculture and Natural Plant Products Program, The State University of New Jersey) ;
  • Bennett, Joan W. (Department of Plant Biology, Rutgers, The State University of New Jersey)
  • Received : 2021.04.28
  • Accepted : 2021.05.26
  • Published : 2021.06.30

Abstract

Truffles are the fruiting bodies of ascomycete fungi that form underground. Truffles are globally valued, culturally celebrated as aphrodisiacs, and highly sought-after delicacies in the culinary world. For centuries, naturalists have speculated about their mode of formation, and in cultures surrounding the Mediterranean Sea, many species have been prized as a delectable food source. Truffle fruiting bodies form underground and emit a variety of volatile organic compounds (VOCs). Truffle volatiles are believed to have evolved to attract animals that disperse their spores. The main VOCs identified from truffles include sulfur compounds, such as dimethyl sulfide (DMS) and dimethyl disulfide (DMDS); in addition, 1-octen-3-ol and 2-methyl-1-propanol have been found in most truffle species. Humans use pigs and dogs trained to detect truffle VOCs in order to find these prized subterranean macrofungi. Truffles have pharmacological potential, but until more reliable cultivation methods become available their high price means they are unlikely to see widespread use as medicinals.

Keywords

Acknowledgement

The authors thank the New Use Agriculture and Natural Plant Products Program at Rutgers University-New Brunswick directed by Dr. James Simon for their funding and support. We also thank the Rutgers University Pipeline - Initiative for Maximizing Student Development (RUP-IMSD) for a stipend to KA. We are grateful to Isabelle Souza for her competent help with manuscript preparation.

References

  1. Lefevre C, Hall I. The status of truffle cultivation: a global perspective. Acta Hortic. 2001;556(556):513-520. https://doi.org/10.17660/ActaHortic.2001.556.75
  2. Luard E. Truffles. Childs hill, London: Berry & Co., Ltd; 2006.
  3. Wang S, Marcone MF. The biochemistry and biological properties of the world's most expensive underground edible mushroom: truffles. Food Res Int. 2011;44(9):2567-2581. https://doi.org/10.1016/j.foodres.2011.06.008
  4. Berch SM. Truffle cultivation and commercially harvested native truffles. Proceedings International symposium on Forest Mushroom. Seoul, South Korea: Korea Forest Research Institute; 2013. Korean Forest Mushroom Society. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.7265&rep=rep1&type=pdf.
  5. Tang YJ, Liu RS, Li HM. Current progress on truffle submerged fermentation: a promising alternative to its fruiting bodies. Appl Microbiol Biotechnol. 2015;99(5):e2053-2053..
  6. Patel S, Rauf A, Khan H, et al. Potential health benefits of natural products derived from truffles: a review. Trends in Food Science & Technology. 2017;70:1-8.. https://doi.org/10.1016/j.tifs.2017.09.009
  7. FX Cuisine.com. Cocaine is cheaper than truffles this year. 2021. Available from: http://fxcuisine.com/default.asp?language=2&Display=19&resolution=high
  8. Hall IR, Brown GT, Zambonelli A. Taming the truffle. The history, lore, and science of the ultimate mushroom. Portland, Oregon: Timber Press; 2007.
  9. Helttula A. Truffles in ancient Greece and Rome. ARCTOS. Acta Philol Fenn. 1996;30:33-47.
  10. Ainsworth GC, Sussman AS. Historical introduction to mycology. The fungi. An advanced treatise. Vol. 1. New York (NY): Academic Press; 1965. p. 3-20.
  11. Ramsbottom J. Mushrooms & toadstools: a study of the activities of fungi. London: Collins, St. James's Place; 1953.
  12. New International Version Bible. The International Bible Society. Grand Rapids (MI): Zondervan; 1973.
  13. Eugenia B. Mycophilia. Revelations from the weird world of mushrooms. New York (NY): Rodale; 2011.
  14. Shavit E. The history of desert truffle use. Desert truffles phylogeny, physiology, distribution and domestication. Berlin, Germany: Springer; 2014. p. 217-241.
  15. Khalifa SAM, Farag MA, Yosri N, et al. Truffles: from Islamic culture to chemistry, pharmacology, and food trends in recent times. Trends Food Sci Technol. 2019;91:193-218. https://doi.org/10.1016/j.tifs.2019.07.008
  16. Mennell S. All manners of food: eating and taste in England and France from the middle ages to the present. 2nd ed., Vol. 65-66. Champaign (IL): University of Illinois Press; 1996. p. 69-71.
  17. Robinson T. An account of the Tubera Terrae, or truffles found at Rushton in Northamptonshire; with some remarks thereon. Philos Trans Royal Soc Lond. 1693;17(202):824-826. https://doi.org/10.1098/rstl.1693.0047
  18. Trappe JM, Molina R, Luoma DL, et al. Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest. U. S. Department of agriculture, general technical report PNW-GTR-772. 2009. Available from: https://www.fs.fed.us/pnw/pubs/pnw_gtr772.pdf
  19. Harkness HW. Californian hypogeous fungi. Proceedings of the California Academy of Science. Vol. 3. San Francisco (CA): The California Academy of the Sciences; 1899. p. 241-292.
  20. Gilkey HM. Tuberales of North America. Oregon State Monographs Studies in Botany. 1939;1:1-63.
  21. Maser C, Claridge AW, Trappe JM. Trees, truffles and beasts: how forests function. Piscataway (NJ): Rutgers University Press; 2008.
  22. Ackerman D. A natural history of the senses. Vintage books. New York (NY): Random House; 1990.
  23. Wolf F, Wolf FT. The fungi. Vol. 1. New York (NY): Jon Wiley and Sons, Inc; 1947.
  24. De Angelis F, Arcadi A, Marinelli F, et al. Partial structures of truffle melanins. Phytochemistry. 1996;43(5):1103-1106. https://doi.org/10.1016/S0031-9422(96)00451-7
  25. Patel S. Food, health and agricultural importance of truffles: a review of current scientific literature. Curr Trend Biotechnol Pharm. 2012;6:15-27.
  26. Torben S, von Wuthenau K, Neitzke G, et al. Food authentication: species and origin determination of truffles (Tuber spp.) by inductively coupled plasma mass spectrometry and chemometrics. J Agric Food Chem. 2020;68(49):14374-14385. https://doi.org/10.1021/acs.jafc.0c02334
  27. Jeandroz S, Murat C, Wang Y, et al. Molecular phylogeny and historical biogeography of the genus Tuber, the "true truffles. J Biogeography. 2008;35(5):815-829. https://doi.org/10.1111/j.1365-2699.2007.01851.x
  28. Kagan-Zur V, Roth-Bejerano N, Sitrit Y, et al. Desert truffles. Phylogeny physiology, distribution and domestication. Berlin, Germany: Springer Science & Business Media; 2013.
  29. O'Donnell K, Cigelnik E, Weber NS, et al. Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia. 1997;89(1):48-65. https://doi.org/10.2307/3761172
  30. Laessoe T, Hansen K. Truffle trouble: what happened to the Tuberales? Mycol Res. 2007;111:1075-1099. https://doi.org/10.1016/j.mycres.2007.08.004
  31. Amicarelli F, Bonfigli A, Colafarina S, et al. Glutathione dependent enzymes and antioxidant defences in truffles: organisms living in microaerobic environments. Mycol Res . 1999; 103(12):1643-1648. https://doi.org/10.1017/S0953756299008928
  32. Louro R, Natario B, Santos-Silva C. Morphological characterization of the in vitro mycorrhizae formed between four Terfezia species (Pezizaceae) with Cistus salviifolius and Cistus ladanifer-towards desert truffles production in acid soils. J Fungi. 2021;7(1):35. https://doi.org/10.3390/jof7010035
  33. Martin F, Kohler A, Murat C, et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature. 2010;464:1033-1038. https://doi.org/10.1038/nature08867
  34. Splivallo R, Fischer U, GoBel C, et al. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 2009;150(4):2018-2029. https://doi.org/10.1104/pp.109.141325
  35. Fu SF, Wei JY, Chen HW, et al. Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signaling Behav. 2015;8:e1048052..
  36. Trappe JM, Claridge AW. The hidden life of truffles. Sci Am. 2010;302(4):78-85. https://doi.org/10.1038/scientificamerican0410-78
  37. Claus R, Hoppen HO, Karg H. The secret of truffles: a steroidal pheromone? Experientia. 1981;37(11):1178-1179. https://doi.org/10.1007/BF01989905
  38. Bach C, Beacco P, Cammaletti P, et al. First production of Italian white truffle (Tuber magnatum Pico) ascocarps in an orchard outside its natural range distribution in France. Mycorrhiza. 2021;31(3):383-388. https://doi.org/10.1007/s00572-020-01013-2
  39. Rubini A, Riccioni C, Belfiori B, et al. Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time. Mycorrhiza. 2014;24(S1):19-27. https://doi.org/10.1007/s00572-013-0551-6
  40. Linde CC, Selmes H. Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffieres in Australia. Appl Environ Microbiol. 2012;78(18):6534-6539. https://doi.org/10.1128/AEM.01558-12
  41. Jacobs R. The truffle underground. A tale of mystery, mayhem, and manipulation in the shadowy market of the world's most expensive fungus. New York (NY): Clarkson Potter/Publishers; 2019.
  42. Stark R. The book of aphrodisiacs. New York (NY): Stein and Day; 1981.
  43. Moore AMD, Pithavadian R. Aphrodisiacs in the global history of medical thought. J Glob Hist. 2021;16(1):20-24.
  44. Paz A, Bellanger JM, Lavoise C, et al. The genus Elaphomyces (Ascomycota, Eurotiales): a ribosomal DNA-based phylogeny and revised systematics of European 'deer truffles.' Persoonia. 2017;38:197-239. https://doi.org/10.3767/003158517X697309
  45. Walker N. Dirty sex: pigs and truffles. Pleiades. 2019;39(2):161-165. https://doi.org/10.1353/plc.2019.0132
  46. Wang G, Li YY, Li DS, et al. Determination of 5alpha-androst-16-en-3alpha-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography-flame ionization detector/electron impact mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2008;870(2):209e215..
  47. El Enshasy H, Elsayed EA, Aziz R, et al. Mushrooms and truffles: historical biofactories for complementary medicine in Africa and in the middle East. Evid Based Complement Alternat Med. 2013;2013:620451.
  48. Savic I, Berglund H. Androstenol-a steroid derived odor activates the hypothalamus in women. PLoS One. 2010;5(2):e8651. https://doi.org/10.1371/journal.pone.0008651
  49. Barwich AS. Smellosophy: what the nose tells the mind. Cambridge (MA): Harvard University Press; 2020.
  50. Pieroni A. The changing ethnoecological cobweb of white truffle (Tuber magnatum Pico) gatherers in South Piedmont, NW Italy. J Ethnobiol Ethnomed. 2016;12:18. https://doi.org/10.1186/s13002-016-0088-9
  51. Hall IR, Brown G, Byars J. The black truffle: its history, uses and cultivation. Christchurch, New Zealand: New Zealand Institute for Crop & Food Research Limited; 1994.
  52. March RE, Richards DS, Ryan RW. Volatile compounds from six species of truffle - head-space analysis and vapor analysis at high mass resolution. Int J Mass Spectrom. 2006;249-250:60-67. https://doi.org/10.1016/j.ijms.2005.12.038
  53. Patterson D. Hocus-Pocus, and a beaker of truffles. New York Times; 2007. Available from: https://www.nytimes.com/2007/05/16/dining/16truf.html.
  54. Pacioni G, Cerretani L, Procida G, et al. Composition of commercial truffle flavored oils with GC-MS analysis and discrimination with an electronic nose. Food Chem. 2014;146:30-35.. https://doi.org/10.1016/j.foodchem.2013.09.016
  55. Burke R, Cairney J. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza. 2002;12(3):105e116-105e116..
  56. Saltarelli R, Ceccaroli P, Cesari P, et al. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem. 2008;109:8-16. https://doi.org/10.1016/j.foodchem.2007.11.075
  57. Harki E, Bouya D, Dargent R. Maturation-associated alterations of the biochemical characteristics of the black truffle Tuber melanosporum Vitt. Food Chem. 2006;99(2):394-400. https://doi.org/10.1016/j.foodchem.2005.08.030
  58. McGee H. Nose dive: a field guide to the world's smells. New York (NY): Penguin Press; 2020.
  59. Xiao DR, Liu RS, He L, et al. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation. Sci Rep. 2015;5:17120.. https://doi.org/10.1038/srep17120
  60. Cullere L, Ferreira V, Chevret B, et al. Characterization of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatographyolfactometry. Food Chem. 2010;122(1):300-306. https://doi.org/10.1016/j.foodchem.2010.02.024
  61. Wang R, Sun Q, Chang Q. Soil type effects on grape and wine composition in Helan Mountain area of Ningxia. PLoS One. 2015;10(2):e0116690.. https://doi.org/10.1371/journal.pone.0116690
  62. Splivallo R, Ebeler SE. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl Microbiol Biotechnol. 2015;99:2583-2592. https://doi.org/10.1007/s00253-014-6360-9
  63. Mustafa AM, Angeloni S, Nzekoue FK, et al. An overview on truffle aroma and main volatile compounds. Molecules. 2020;25(24):5948. https://doi.org/10.3390/molecules25245948
  64. Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. 2015;6:151.. https://doi.org/10.3389/fpls.2015.00151
  65. Pacioni G, Bologna MA, Laurenzi M. Insect attraction by Tuber: a chemical explication. Mycol. Res. 1991;95(12):1359-1363. https://doi.org/10.1016/s0953-7562(09)80385-7
  66. Mauriello G, Marino R, D'Auria M, et al. Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci. 2004;42(6):299-305. https://doi.org/10.1093/chromsci/42.6.299
  67. Splivallo R, Novero M, Bertea CM, et al. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 2007;175(3):417-424. https://doi.org/10.1111/j.1469-8137.2007.02141.x
  68. Stephens RB, Trowbridge AM, Ouimette AP, et al. Signaling from below: rodents select for deeper fruiting truffles with stronger volatile emissions. Ecology. 2020;101(3):e02964.
  69. Liu RS, Zhou H, Li HM, et al. Metabolism of L-methionine linked to the biosynthesis of volatile organic sulfur-containing compounds during the submerged fermentation of Tuber melanosporum. Appl Microbiol Biotechnol. 2013;97(23):9981e9992. https://doi.org/10.1007/s00253-013-5224-z
  70. Pelusio F, Nilsson T, Montanarella L, et al. Headspace solid-phase microextraction analysis of volatile organic sulfur compounds in black and white truffle aroma. J Agric Food Chem. 1995;43(8):2138-2143. https://doi.org/10.1021/jf00056a034
  71. Fraatz MA, Zorn H. Fungal flavours. The Mycota X: industrial applications. Berlin, Heidelberg: Springer-Verlag; 2010. p. 249-264.
  72. Splivallo R, Deveau A, Valdez N, et al. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. 2015;17(8):2647-2660. https://doi.org/10.1111/1462-2920.12521
  73. Vahdatzadeh M, Deveau A, Splivallo R. The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Appl Environ Microbiol. 2015;81(20):6946-6952. https://doi.org/10.1128/AEM.01098-15
  74. Menotta M, Amicucci A, Sisti D, et al. Differential gene expression during pre-symbiotic interaction between Tuber borchii Vittad. and Tilia americana L. Current Genet. 2004;46:158-165.
  75. Pacioni G. Effects of Tuber metabolites on the rhizospheric environment. Mycol Res. 1991;95(12):1355-1358.(09)80384-5. https://doi.org/10.1016/s0953-7562(09)80384-5
  76. Splivallo R, Ottonello S, Mello A, et al. Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol. 2011;189:688-699. https://doi.org/10.1111/j.1469-8137.2010.03523.x
  77. Winslow LC, Kroll DJ. Herbs as medicines. Arch Intern Med. 1998;158(20):2192-2199. https://doi.org/10.1001/archinte.158.20.2192
  78. Liao LY, He YF, Li L, et al. A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin Med. 2018;13:57. https://doi.org/10.1186/s13020-018-0214-9
  79. Nayak S, Nayak BS. Ganoderma lucidum: multitherapeutic values mushroom. Pharm Adv Res. 2018;1:323-328.
  80. Shashkina MY, Shashkin PN, Sergeev AV. Chemical and medicobiological properties of chaga. Pharm Chem J. 2006;40(10):560-568. https://doi.org/10.1007/s11094-006-0194-4
  81. Benjamin DR. Mushrooms: poisons and panaceas. A handbook for naturalists, mycologists, and physicians. New York (NY): W. H Freeman and Company; 1995.
  82. Tietel Z, Masaphy S. True morels (Morchella)-nutritional and phytochemical composition, health benefits and flavor: a review. Crit Rev Food Sci Nutr. 2018;58(11):1888-1901. https://doi.org/10.1080/10408398.2017.1285269
  83. Claridge AW, Trappe JM. Sporocarp mycophagy: nutritional, behavioral, evolutionary, and physiological aspects. The fungal community-its organization and role in the ecosystem. Boca Raton (FL): CRC Press; 2005. p. 599-611.
  84. Dogan HH, Aydin S. Determination of antimicrobial effect, antioxidant activity and phenolic contents of desert truffle in Turkey. Afr J Tradit Complement Altern Med. 2013;10(4):52e58.
  85. Pacioni G, Rapino C, Zarivi O, et al. Truffles contain endocannabinoid metabolic enzymes and anandamide. Phytochemistry. 2015;110:104-110. https://doi.org/10.1016/j.phytochem.2014.11.012
  86. Wu Z, Meenu M, Xu B. Nutritional value and antioxidant activity of Chinese black truffle (Tuber indicum) grown in different geographical regions in China. Lwt Food Sci Technol. 2021;135:110226. https://doi.org/10.1016/j.lwt.2020.110226