• Title/Summary/Keyword: 1-TNATA

Search Result 36, Processing Time 0.039 seconds

Formation and Current-voltage Characteristics of Molecularly-ordered 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine film (분자배열된 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine 박막 제조와 전기적 특성)

  • Kang, Do Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.506-510
    • /
    • 2007
  • Vacuum deposited 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine (1-TNATA), a widely-used semiconductor material, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in OLEDs and a well-stacked 1-TNATA layer leads to stable and high efficiency devices by reducing the carrier injection barrier at the interface between the ITO anode and hole transport layers. According to Raman spectra, thermal annealing after deposition as well as electromagnetic field treatment during deposition lead to closer stacking of 1-TNATA molecules and resulted in molecular ordering. By thermal annealing at about $110^{\circ}C$, an increase in current flow through the film by over 25% was observed. Molecularly-ordered 1-TNATA films played an important role in achieving higher luminance efficiency as well as higher power efficiency of the multi-layered organic EL devices in the present work. Electromagnetic field treatment during deposition was less effective compared to thermal annealing

All Carrier Ohmic-Contacts을 이용한 유기 발광 다이오드의 성능 향상 연구

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.168-168
    • /
    • 2012
  • 본 연구에서는 Molybdenum oxide (MoOx)-doped 4,4',4"-tris[2-naphthyl(amino)] triphenylamine(2-TNATA)의 P-doping에 의한 hole ohmic contact과 fullerene (C60)/lithium (LiF)의 electron ohmic contact에 의한 All Ohmic contact를 이용한 유기 발광 다이오드 (OLEDs)의 광저항 특성의 향상을 설명한다. 이 소자의 성능은 MoOx-doped 2-TNATA의 두께와 도핑농도에 큰 영향을 받는다. glass/ITO/MoOx-doped 2-TNATA (100 nm)/Al 구조의 소자에서 MoOx-doped 2-TNATA 도핑 농도가 25%에서 75%로 증가할수록 hole only device의 hole ohmic 특성이 향상됐다. 그 이유는 p-type doping effect 때문이다. 또한 photoemission spectra 분석결과, p-type doping effect는 hole-injecting barrier 높이는 낮추고, hole conductivity는 향상되었다. 이것은 2-TNATA에 도핑된 MoOx의 전하전송 콤플렉스의 형성으로 hole carrier의 수가 증가하여 발생되었다. MoOx-doped 2-TNATA의 hole ohmic contact과 fullerene (C60)/lithium fluoride (LiF)의 electron ohmic contact 으로 구성된 glass/ITO/MoOx-doped 2-TNATA (75%, 60 nm)/NPB (10 nm)/Alq3 (35 nm)/C60 (5 nm)/LiF (1 nm)/Al (150 nm)의 소자구조는 6,4V에서 127,600 cd/m2 최대 휘도와 약 1,000 cd/m2에서 4.7 lm/W의 높은 전력 효율을 보여준다.

  • PDF

Fabrication and Characterization of Yellow OLED using GDI602:Rubrene(10%) Material (GDI 602/Rubrene을 이용한 황색 OLED의 제작과 특성 분석)

  • Jang, Ji-Geun;Kim, Hee-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.71-75
    • /
    • 2006
  • The yellow emitting OLED using GDI602:Rubrene(10%) material has been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenyl-amine] as a hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl -4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, yellow emission material was deposited using GDI602 as a host material and Rubrene(10%) as a dopant. Finally, small molecular OLED with the structure of $ITO/2-TNATA/NPB/GDI602:Rubrene(10%)/Alq_{3}/LiF/Al$ was obtained by in-situ successive deposition of $Alq_{3}$, LiF and Al as the electron transport material, electron injection material and cathode. The yellow OLED fabricated in our experiments showed the color coordinate of CIE(0.50, 0.49), the luminance of $2300\;Cd/m^{2}$ and the power efficiency of 0.7 lm/W at 10 V with the peak emission wavelength of 562 nm.

  • PDF

Characterization of Blue Organic Light Emitting Diodes using TPM-BiP (TPM-BiP 청색 형광 재료의 전계발광특성)

  • Chang, Ji-Geun;Shin, Sang-Baie;Ahn, Jong-Myoung;Chang, Ho-Jung;Lee, Hak-Min;Gong, Myoung-Sun;Kim, Min-Young;Kim, Jun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.11-14
    • /
    • 2007
  • For the fabrication of blue color organic light emitting diodes(OLED) with a high performance, 2-TNATA [4,4',4"-tris (2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB [N,N'-bis (1-naphthyl) -N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by the vacuum thermal evaporation. After then, blue color emission layer was deposited using TPM-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl)phosphonate] and GDI602 as a light emitting organic material. Finally, the two kinds of OLEDs with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al and ITO/2-TNATA/NPB/GDI602/Alq_3/LiF/Al$ were prepared by in-situ deposition. The maximum current density and luminance were found to be about $588\;mA/cm^2\;and\;5239\;cd/m^2$ at 12V for the OLED sample with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al$. Color coordinate of blue OLED was x=0.18, y=0.18 (at llV) and the maximum current efficiency was 2.82 cd/A (at 6V) with the peak emission wavelength of 440 nm.

  • PDF

Characteristics on the Variation of Hole transporting layer of Blue organic light-emitting diodes (정공수송층의 변화에 따른 청색 유기 발광 소자의 특성)

  • Kim, Gu-Young;Park, Jung-Hyun;Seo, Ji-Hoon;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.434-435
    • /
    • 2007
  • We have demonstrated the characteristics on the variation of hole transporting layer in blue organic light-emitting diodes (OLEDs) using new blue fluorescent emitter. We fabricated two types of hole transporting layer structures that one is 4,4',4"-Tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine (2-TNATA) of $600{\AA}$ as a hole injection layer, N,N'-diphenyl-N,N'- (2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) of $200{\AA}$ as a hole transporting layer and another device is NPB of $500{\AA}$ without the 2-TNATA. The devices without the 2-TNATA showed improved characteristic of the luminance and efficiency.

  • PDF

Fabrication and Characterization of High Performance Green OLEDs using $Alq_3$-C545T Systems ($Alq_3$-C545T시스템을 이용한 고성능 녹색 유기발광다이오드의 제작과 특성 평가)

  • Jang Ji-Geun;Kim Hee-Won;Shin Se-Jin;Kang Eui-Jung;Ahn Jong-Myong;Lim Yong-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.51-55
    • /
    • 2006
  • The green emitting high performance OLEDs using the $Alq_3$-C545T fluorescent system have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, green color emission layer was deposited using $Alq_3$ as a host material and C-545T[10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]/benzopyrano[6,7,8-ij]-quinolizin-11-one] as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:C545T/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Green OLEDs fabricated in our experiments showed the color coordinate of CIE(0.29, 0.65) and the maximum power efficiency of 7.3 lm/W at 12 V with the peak emission wavelength of 521 nm.

  • PDF

Analysis of Characteristics of the Blue OLEDs with Changing HBL Materials (정공 저지층의 재료변화에 따른 청색유기발광소자의 특성분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, two types of blue organic light-emitting device were designed. We have analyzed the characteristics of Type I device without a hole blocking layer, and analyzed the characteristics of Type II device using a hole blocking layer of BCP or BAlq materials with 30 ${\AA}$ thickness. We obtained the ITO having the work function value of 5.02 eV using $N_2$ plasma treatment method with the plasma power 200 W. Type I device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/$Alq_3$/LiF/Al:Li, and type II device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/HBL/$Alq_3$/LiF/Al:Li. We have analyzed the characteristics of Type I and Type II device. The characteristics of the device were most efficiency on occasion of using a hole blocking layer of BAlq material with 30 ${\AA}$ thickness. Current density was 226.75 $mA/cm^2$, luminance was 10310 $cd/m^2$, Current efficiency was 4.55 cd/A, power efficiency was 1.43 lm/W at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device was 456nm. The full-width at half-maximum (FWHM) for the EL spectra was 57nm. CIE color coordinates were x=0.1438 and y=0.1580, which was similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

Impedance Characteristics of Fluorescent OLED with Device Structure (소자 구조에 따른 형광 OLED의 Impedance 특성)

  • Kong, Do-Hoon;Ju, Sung-Hoo
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • To study the impedance characteristics of a fluorescent OLED according to the device structure, we fabricated Device 1 using ITO / NPB / $Alq_3$ / Liq / Al, Device 2 using ITO / 2-TNATA / NPB / $Alq_3$ / Liq / Al, and Device 3 using ITO / 2-TNATA / NPB / SH-1:BD / $Alq_3$ / Liq / Al. The current density and luminance decreased with an increasing number of layers of the organic thin films in the order of Device 1, 2, 3, whereas the current efficiency increased. From the Cole-Cole plot at a driving voltage of 6 V, the maximum impedance values of Devices 1, 2, and 3 were respectively 51, 108, and $160{\Omega}$ just after device fabrication. An increase in the impedance maximum value is a phenomenon caused by the charge mobility and the resistance between interfaces. With the elapse of time after the device fabrication, the shape of the Cole-Cole plot changed to a form similar to 0 or a lower voltage due to the degradation of the device. As a result, we were able to see that an impedance change in an OLED reflects the characteristics of the degradation and the layer.

Fabrication of Blue OLED with GDI Host and Dopant (GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작)

  • Jang, Ji-Geun;Shin, Se-Jin;Kang, Eui-Jung;Kim, Hee-Won;Seo, Dong-Gyoon;Lim, Yong-Gyu;Chang, Ho-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

Fabrication and Characterization of Red Emitting OLEDs using the Alg3:Rubrene-GDI4234 Phosphor System (Alg3:Rubrene-GDI4234 형광 시스템을 이용한 적색 OLED의 제작과 특성 평가)

  • Jang Ji-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.437-441
    • /
    • 2006
  • The red emitting OLEDs using $Alq_3$:Rubrene-GDI4234 phosphors have been fabricated and characterized . In the device fabrication, 2- TNATA [4,4',4' - tris (2- naphthylphenyl - phenylamino ) - tripheny lamine] as the hole injection material and NPB [N,N'-bis (1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as the hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum evaporation. And then, red color emissive layer was deposited using $Alq_3$ as the host material and Rubrene(5,6,11,12-tetraphenylnaphthacene)-GDI4234 as the dopants. finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:Rubrene-GDI4234/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Red OLEDs fabricated in our experiments showed the color coordinate of CIE(0.65, 0.35) and the maximum power efficiency of 2.1 lm/W at 7 V with the peak emission wavelength of 632 nm.