• Title/Summary/Keyword: 1-Parameter Weibull Model

Search Result 66, Processing Time 0.024 seconds

Simulation of Run-Length and Run-Sum of Daily Rainfall and Streamflow (일수문량의 RUN-LENGTH 및 RUN-SUM의 SIMULATION)

  • 이순택;지홍기
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.79-94
    • /
    • 1977
  • This study is aimed at the establishment and examination of stochastic model to simulate Run-length and Run-sum of daily rainfall and streamflow. In the analysis, daily rainfall records in major cities (Seoul, Kangnung, Taegu, Kwangju, Busan, and Cheju) and daily streamflow records of Major rivers (Han, Nakdong and Geum River) were used. Also, the fitness of daily rainfall and streamflow to Weibull and one parameter exponential distribution was tested by Chi-square and Kolmogorov-Smirnov test, from which it was found that daily rainfall and streamflow generally fit well to exponential type distribution function. The Run-length and Run-sum were simulated by the Weibull Model (WBL Model), one parameter exponential model (EXP-1 Model) based on the Nonte Carlo technique. In this result, Run-length of rainfall was fitted for one parameter exponential model and Run-length of streamflow was fitted for Weibull model. And Run-sum of rainfall and streamflow were fit comparatively for regression model. Hereby, statistical charactristics of Simulation data were sinilar to historical data.

  • PDF

CAUTION OF REGIONAL FLOOD FREQUENCY ANALYSIS BASED ON WEIBULL MODEL

  • Heo, Jun-Haeng;Lee, Dong-Jin;Kim, Kyung-Duk
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2000
  • Regional flood frequency analysis has been developed by employing the nearby site's information to improve a precision in estimating flood quantiles at the site of interest. In this paper, single site and regional flood frequency analyses were compared based of the 2-parameter Weibull model. For regional analysis, two approaches were employed. The First one is to use the asymptotic variances of the quantile estimators derived based of the assumption that all sites including the site of interest are independent each other. This approach may give the maximum regional gain due to the spatial independence assumption among sites. The second one in Hosking's regional L-moment algorithm. These methods were applied to annual flood data. As the results, both methods generally showed the regional gain at the site of interest depending on grouping the sites as homogeneous. And asymptotic formula generally shows smaller variance than those from Hosking's algorithm. If the shape parameter of the site of interest from single site analysis is quite different from that from regional analysis then Hosking's results might be better than the asymptotic ones because the formula was derived based on the assumption that all sites have the same regional shape parameter. Furthermore, in such a case, regional analysis might be worse than single site analysis in the sense of precision of flood quantile estimation. Even though the selected sites may satisfy Hosking's criteria, regional analysis may not give a regional gain for specific and nonexceedance probabilities.

  • PDF

Evaluation of Two Kinetic Models on the Inactivation of Major Foodborne Pathogens by Aqueous Chlorine Dioxide Treatment (이산화염소수 처리에 의한 주요 식중독균의 불활성화에 관한 두 kinetic models의 비교)

  • Lee, Ji-Hye;Song, Hyeon-Jeong;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.423-428
    • /
    • 2011
  • Inactivation kinetic data of Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Salmonella Enteritidis via treatment with aqueous chlorine dioxide treatment at a specific concentration were evaluated using the first-order kinetic and Weibull models. The Weibull model showed a better fit with the kinetic data than the first-order kinetic model. The survival curves after the aqueous chlorine dioxide treatment showed $t_R$ values(time required to reduce microbial populations by 90%) of 2.49 min for E. coli O157:H7 at 5 ppm, 1.47 min for L. monocytogenes at 5 ppm, 0.94 min for S. aureus at 5 ppm, 0.87 min for S. Typhimurium at 1 ppm, and 0.08 min for S. Enteritidis at 1 ppm, according to the Weibull model.

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture

  • Ogana, Friday Nwabueze;Chukwu, Onyekachi;Ajayi, Samuel
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson's SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

Evaluation of Dowel Bearing Strength of Structural Composite Lumber(SCL) on the Effect of Moisture Content

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.61-69
    • /
    • 2003
  • This study investigated the effect of moisture content and loading direction on dowel bearing strength of two types of SCL. Dowel bearing tests of LVL and PSL were conducted with two different MC level, 7.5% and 19%, and two different oriention, L-direction(loading parallel to grain) and X-direction(loading perpendicular to grain). Most of specimens showed typical load-deformation curves and intersected 5% offset line. Failure modes were classified into two categories; spliting(for L-direction specimens) and peeling(for X-direction specimens). Dowel bearing strength generally decreased with increasing MC. The decreasing rate was more significant in X-directon. ESG also decreased with increasing MC, and the ratio of ESG of 7.5% versus 19% was about 1.47. Dowel bearing strength of LVL and PSL in L-direction was higher than that of X-direction. This results indicated that MC and loading orientation had a significant effect on dowel bearing strength of SCL. The average dowel bearing strength of LVL were higher than that of PSL in each loading direction. Two types of probability distribution model were chosen to quantify strength distribution, normal and 2-parameter weibull distribution. The two models showed good agreement with the data, especially in lower tail of the cumulative distribution. Normal and 2-parameter weibull distribution seemed to proper model of the dowel bearing strength for each MC levels.

A new extended alpha power transformed family of distributions: properties, characterizations and an application to a data set in the insurance sciences

  • Ahmad, Zubair;Mahmoudi, Eisa;Hamedani, G.G.
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • Heavy tailed distributions are useful for modeling actuarial and financial risk management problems. Actuaries often search for finding distributions that provide the best fit to heavy tailed data sets. In the present work, we introduce a new class of heavy tailed distributions of a special sub-model of the proposed family, called a new extended alpha power transformed Weibull distribution, useful for modeling heavy tailed data sets. Mathematical properties along with certain characterizations of the proposed distribution are presented. Maximum likelihood estimates of the model parameters are obtained. A simulation study is provided to evaluate the performance of the maximum likelihood estimators. Actuarial measures such as Value at Risk and Tail Value at Risk are also calculated. Further, a simulation study based on the actuarial measures is done. Finally, an application of the proposed model to a heavy tailed data set is presented. The proposed distribution is compared with some well-known (i) two-parameter models, (ii) three-parameter models and (iii) four-parameter models.

Composites Fatigue Life Evaluation based on non-linear fatigue damage model (비선형 피로손상 모델을 이용한 복합재 피로수명 평가)

  • 김성준;황인희
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • Prediction of composite fatigue life is not a straightforward matter, depending on various failure modes and their interactions. In this paper, a methodology is presented to predict fatigue life and residual strength of composite materials based on Phenomenological Model(non-linear fatigue damage model). It is assumed that the residual strength is a monotonically decreasing function of the number of loading cycles and applied fatigue stress ratio and the model parameters(strength degradation parameter and fatigue shape parameter) are assumed as function of fatigue life. Then S-N curve is used to extract model parameters that are required to characterize the stress levels comprising a randomly-ordered load spectrum. Different stress ratios (${\sigma}_{min}/{\;}{\sigma}_{max}$) are handled with Goodman correction approach(fatigue envelope) and the residual strength after an arbitrary load cycles is represented by two parameter weibull functions.

A bimodal Weibull distribution - capacity factor for different heights at sulur

  • Seshaiah, C.V.;Indhumathy, D.
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Due to developing environmental concern use of renewable energy source is very essential. The great demand for the energy supply coupled with inadequate energy sources creates an emergency to find a new solution for the energy shortage. The appropriate wind energy distribution is the fundamental requirement for the assessment of wind energy potential available at the particular site essential for the design of wind farms. Hence the proper specification of the wind speed distribution plays a vital role. In this paper the Bimodal Weibull distribution is used to estimate the Capacity factor at the proposed site. The shape and scale parameters estimated using Maximum likelihood method is used as the initial value for extrapolation. Application of this model will give an accurate result overwhelming the concept of overestimation or underestimation of Capacity factor.

Analysis of the Partial Discharge Pattern in XLPE Insulators using Distribution Statistical Models (분포통계모델에 의한 가교폴리에틸렌 절연체의 부분방전 패턴해석)

  • Kim Tag-Yong;Park Hee-Doo;Cho Kyung-Soon;Park Ha-Yong;Hong Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.947-952
    • /
    • 2006
  • It has been confirmed that the inner defect of insulator and the perfect diagnosis for aging are closely related to safe electric power transmission system and that the detection of accident and diagnosis technique turn out to be very important issues. But perfect diagnosis is difficult because discharge pattern is irregular. Thus, we investigated discharge pattern using the new distribution statistical models with cross-inked polyethylene(XLPE) specimens. Voltage was applied to power frequency by step method, and calibration of discharge was set to 50 pC. After the voltage was applied, it measured the discharge occurring during 10s. We investigated discharge pattern using the K-means analysis and Weibull function. We also investigated variation of centroid and shape parameter due to variation of voltage. As a result of analyzing K-means, it was confirmed that cluster including many object numbers was formed by the presence of void. And result of Weibull distribution, it was confirmed that shape parameter of discharge varied from 1.28 to 1.62 in no void specimens, and that shape parameter of discharge number varied from 1.28 to 1.62. In the void, shape parameter of discharge varied from 5.66 to 6.43, and shape parameter of discharge number varied from 5.05 to 5.08.

Parameter Estimations in the Complementary Weibull Reliability Model

  • Sarhan Ammar M.;El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • v.6 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • The Bayes estimators of the parameters included in the complementary Weibull reliability model are obtained. In the process of deriving Bayes estimators, the scale and shape parameters of the complementary Weibull distribution are considered to be independent random variables having prior exponential distributions. The maximum likelihood estimators of the desired parameters are derived. Further, the least square estimators are obtained in closed forms. Simulation study is made using Monte Carlo method to make a comparison among the obtained estimators. The comparison is made by computing the root mean squared errors associated to each point estimation. Based on the numerical study, the Bayes procedure seems better than the maximum likelihood and least square procedures in the sense of having smaller root mean squared errors.

  • PDF