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Abstract

Heavy tailed distributions are useful for modeling actuarial and financial risk management problems. Actu-
aries often search for finding distributions that provide the best fit to heavy tailed data sets. In the present work,
we introduce a new class of heavy tailed distributions of a special sub-model of the proposed family, called a new
extended alpha power transformed Weibull distribution, useful for modeling heavy tailed data sets. Mathematical
properties along with certain characterizations of the proposed distribution are presented. Maximum likelihood
estimates of the model parameters are obtained. A simulation study is provided to evaluate the performance of
the maximum likelihood estimators. Actuarial measures such as Value at Risk and Tail Value at Risk are also
calculated. Further, a simulation study based on the actuarial measures is done. Finally, an application of the pro-
posed model to a heavy tailed data set is presented. The proposed distribution is compared with some well-known
(i) two-parameter models, (ii) three-parameter models and (iii) four-parameter models.

Keywords: alpha power transformation, Weibull distribution, family of distributions, actuarial mea-
sures, characterizations, maximum likelihood estimation, Monte Carlo simulation

1. Introduction

Statistical distributions play a vital role in modeling data in applied areas such as risk management,
banking, economic, financial and actuarial sciences. However, the quality of the procedures primarily
depends upon the assumed probability model of the phenomenon under consideration. Among applied
fields, insurance data sets are usually positive (Klugman et al., 2012), right skewed (Lane, 2000),
unimodal (Cooray and Ananda, 2005) and with heavy tails (Ibragimov and Prokhorov, 2017). Right-
skewness may be adequately modeled by the skewed distributions (Bernardi et al., 2012). Therefore,
a number of unimodal positively skewed parametric distributions have been deployed to model such
data sets (Klugman et al., 2012; Eling, 2012; Bagnato and Punzo, 2013; Garcia et al., 2014; Bakar et
al., 2015; Kazemi and Noorizadeh, 2015; Adcock et al., 2015; Landsman et al., 2016; Reynkens et
al., 2017; Punzo et al., 2017; Bhati and Ravi, 2018).

Among available literature, the Pareto, Weibull, and gamma are the promising distributions used
widely for modeling insurance data sets. Unfortunately, due to the monotonically decreasing shape,
the Pareto distribution often does not provide a best fit to many data sets. Weibull distribution is
suitable for modeling small losses, but fails to provide best fit to large losses. In addition, gamma
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distribution is also popular because it does not have a closed form expression of cumulative distribu-
tion function (cdf). Consequently, introducing new distributions to address these problems and cater
heavy tailed data is an interesting research topic that is quite rich and growing rapidly. Therefore, re-
searchers are often in search of finding more flexible distributions. This has been done through many
different approaches such as (i) transformation method, (ii) composition of two or more distributions,
(iii) compounding of distributions, and (iv) finite mixture of distributions, for details see Ahmad et al.
(2019a).

Among the prominent methods, Mahdavi and Kundu (2017) recently proposed a new method for
introducing statistical distributions via the cdf given by

CZF (x) _ 1
G(x;all,{-'):la—l, >0, a1 #1, xeR, (1.1)
=

where F(x;¢&) is the distribution function of the baseline random variable depending on the vector
parameter £ € R, and « is the additional parameter.

Ahmad et al. (2019b) proposed another method, called extended alpha power transformed (Ex-
APT) family of distributions with cdf given by

oF 50 _ JF(xit)
G (x;a1,8) = 1—, a; >0, a; £e, xeR.
a) —e
The Ex-APT family is an extension of (1.1) by introducing the exponent term, which is a constant
quantity. Because of the constant term, the Ex-APT family approach is not a flexible extension of
(1.1). In this article, we introduce another new extension of (1.1), called new Ex-APT (NEx-APT)
family by introducing an additional parameter 8 € R*. A random variable X follows the NEx-APT

distribution, if its cdf is given by

af(th) _ [1 _BF (x"f):l
(0] —ﬁ

where, B = 1 — 8. For 8 = 1, the NEx-APT method captures the characteristics of (1.1) and for

a; = 1, the NEx-APT approach offers the baseline distribution characteristics. The probability density
function (pdf) corresponding to (1.2) is given by

£ (6,6 [log (@) o™ + B
a - B

The new pdf is most tractable when F(x,&) and f(x,&) have simple analytical expressions. A
random variable X with pdf (1.3) is represented by X ~ NEx-APT (x; a1, 8, £). Furthermore, the de-
pendence on the vector of the parameters is omitted and G(x)= G(x; a1, 5, &) will be used for efficiency.
The proposed method is very interesting with a closed form for the cdf and capable of modeling heavy
tailed insurance data sets.

The rest of this work is as follows. In Section 2, we introduce a special sub-case of (1.3), called a
NEx-APT Weibull (NEx-APTW) distribution by considering Weibull model as a parent distribution.
Some mathematical properties are derived in Section 3. Certain characterizations of the proposed
distribution are provided in Section 4. Maximum likelihood estimation and Monti Carlo simulation
study are provided in Section 5. Section 6 offers the computation of the actuarial measures and simu-
lation study based on these measures. A heavy tailed real-life application from the insurance sciences
is discussed in Section 7. Here the proposed model is compared with some prominent distributions.
Finally, the article is concluded in Section 8.

G(x;a1,B,8) =

, a,>0,a>B xeR, (1.2)

g(xa,pB.é) = , xeR. (1.3)
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2. Sub-model and its special cases

In this section, we introduce a sub-model of the (1.2) and discuss its special cases.

2.1. A new extended alpha power transformed Weibull distribution

Let F(x;¢) and f(x; &) be the cdf and pdf of the two parameters Weibull distribution given by F(x; &) =
1—e,x>0,a,y>0,and f(x;&) = ayx® e, respectively, where & = (a, y). Then, the cdf of
the NEx-APTW distribution has the following expression

- [1-B( )

G(x) = , a,B,a,y>0,a>8 x>0. 2.1
a -
The pdf corresponding (2.1) is given by
ayx®le [log (1) cx(ll_em ) +B
gx) = , x>0. (2.2)

a —f
The survival function (sf) and hazard function (hf) of NEx-APTW distribution are respectively, given
by

. —ﬁ _ {al(ll—ewr”) _ [1 _B(l _ eyx")]}
a;—p
(12

ayx®le [log (an)a, +p

S(x) = , x>0,

h(x) = x> 0.

I—e 7 = o)
al—ﬁ—{ag ) [1-B - )]}
Figure 1 sketches different plots for the density function of the NEx-APTW distribution.

2.2. Special cases of NEx-APTW distribution

Let X have the NEx-APTW distribution with parameters (@i,3, @,y). Then, the distribution of X
reduces to:

1. Alpha power transformed Weibull (APTW) distribution, if 8 = 1.

Alpha power transformed exponential (APTE) distribution, if « = 1 and 8 = 1.
Weibull distribution, if @1 = 1.

Rayleigh distribution, if @; = 1 and o = 2.

Exponential distribution if ¢ = 1 and @ = 1.

One parameter Weibull distribution, if @) = 1 and y = 1.

One parameter New extended alpha power transformed Weibull, if y = 1. (New)

New extended alpha power transformed Rayleigh, if @ = 2. (New)

¥ ® 2 A Db

New extended alpha power transformed exponential, if @ = 1. (New)
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Figure 1: Different plots for the density function of the NEx-APTW distribution. NEx-APTW = new extended
alpha power transformed Weibull

3. Mathematical properties

In this section, we derive some mathematical properties of the NEx-APT distribution, such as quantile
function, moments and moment generating function.

3.1. Quantile function

The quantile function of the NEx-APT distribution, denoted by Q(u), can be obtained by inverting its
cdf (1.2). Therefore, we have

X, = Q) =G =F@, (3.1)

where 7 is the solution of the expression a’l +pBt—u(a; —B)—1=0,and u € (0,1). The nonlinear
expression (3.1) can be used to obtain random numbers for the NEx-APT distribution.

3.2. Moments

In this sub-section, we intend to derive the moments and the moment generating function of the NEx-
APT distribution. Let X follow (1.3), then, the " moment of Xis derived as

ul = f Xg (v a1, B, ) dx, (3.2)

and using (1.3) in (3.2), we have

L f@ologana™? + B
pr= | X al - B dx. (3.3)

The function @} has the Maclaurin series given by

oo

af = ) log @) = (3:4)

n=0
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Taking x = F (x;£) in (3.4), we get

%Zwm“ﬂ s
Using (3.5) in (3.3), we have
/= N n+l1 Ar,n BAr
Hy = ;(log (@1)) @ —pn + @B’ (3.6)

where Ay, = [ X f (0, &) F (x;&)"dxand A, = [ X' f (x,&) dx.
Furthermore, the moment generating function of the NEx-APT random variable X, M (¢), is given
by

00

n+ A I'BA
My (1) = Z (log (a1)) 1 lg)nvr' Z (ar =pynlr!’

r,n=0

4. Characterizations of NEx-APT distribution

In this section, we present certain characterizations of the NEx-APT distribution in the following
directions: (i) based on a simple relationship between two truncated moments and (ii) in terms of the
reverse hazard function. It should be mentioned that for the characterization (i) the cdf is not required
to have a closed form.

We present our characterizations (i)—(ii) in two subsections.

4.1. Characterizations based on two truncated moments

In this subsection, we present characterizations of NEx-APT distribution in terms of a simple rela-
tionship between two truncated moments. The first characterization result employs a theorem due to
Glénzel (1987), see Theorem 4.1 below. Note that the result holds also when the interval H is not
closed. Moreover, in it could be also applied when the cdf F does not have a closed form. As shown
in Glénzel (1990), this characterization is stable in the sense of weak convergence.

Theorem 1. Let (Q, F,P) be a given probability space and let H = [d, e] be an interval for some
d < e (d=—o0, e =00 might as well be allowed). Let X : Q — H be a continuous random variable
with the distribution function G and let ¢, and q; be two real functions defined on H such that

E[@2X)|X > x] =E[q:(X)]X > x]n(x), x€H,

is defined with some real function 1. Assume that q1,q, € C'(H), n € C*(H) and G is twice contin-
uously differentiable and strictly monotone function on the set H. Finally, assume that the equation
nq1 = g2 has no real solution in the interior of H. Then G is uniquely determined by the functions
q1,q», and n, particularly

' n ()
G = | c|—T  lexp(=s(u))du,
WLLWMMMWM”

where the function s is a solution of the differential equation " = 1’ q1/(nq1 — q2) and C is the
normalization constant, such that fH dGg = 1.
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Proposition 1. Let X : Q — R be a continuous random variable and let ¢ (x) = [log(al)af(x;g) +

BI7" and g>(x) = q1(x)F(x; &) for x € R. The random variable X has pdf (1.3) only if the function n
defined in Theorem 1 has the form

n(x) = %[1+F(x;§)], xeR.

Proof: Let X be a random variable with pdf (1.3), then

(1-G(X)E|[q (X)IXZx]=f q1 (x) g (x;a1,B,6) dx

l_ﬁfxwf(x;f)dx

ay

=ﬁ(1—F(x)), x€eR,
and
(1-G)NE[g2(X) X = x| = f q2 (x) g (x;a1,B,8) dx
1 00
_ jﬂfm@Fufo
al_B x
— 1 _ 2
_—2(a1—ﬂ)(1 F(x?), xe€R,
and finally

1
10q1(x) = q2(x) = 5 (1 + F () g1 () = q1 () F (x)

=D L E ) —2F )
= qlT(x){l—F(x)}, for x € R.

Conversely, if 1 is given as above, then

TG B (€ 1)
nx)qi(x) — g2(x)  1-F(x;€)’

xeR,

therefore,

s(x) = —log[l - F(x;6)], x€eR.

Now, in view of Theorem 1, X has density (1.3).

Corollary 1. Let X : Q — R be a continuous random variable and let q\(x) be as in Proposition
1. The pdf of X is (1.3) only if there exist functions q, and n defined in Theorem 1 satisfying the
differential equation

n"Oqax)  f(xE)

= R.
TOG® - 1-Fmé
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Corollary 2. The general solution of the differential equation in Corollary 1 is

n() =[1-FxH™ [—ff(X;f) (g1 ()" q2(0) + D,

where D is a constant. Note that a set of functions satisfying the above differential equation is given
in Proposition 1 with D = 1/2. However, it should be also noted that there are other triplets (q1, q2,1)
satisfying the conditions of Theorem 1.

4.2. Characterization in terms of the reverse hazard function

The reverse hazard function, rg, of a twice differentiable distribution function, G , is defined as

rg(x) = %, x € support of G.

In this subsection, we present a characterization of the NEx-APT distribution in terms of the reverse
hazard function.

Proposition 2. Let X : Q — R be a continuous random variable. The random variable X has pdf
(1.3) only if its reverse hazard function rg (x) satisfies the following differential equation.

! (x d log (@) @™ +
r&(x)—f(’“‘f)m(w:f(x;f)—{ | [

fs9) dx | @Fsd — |1 - BF (x; )]
Proof: Is straightforward and hence omitted. (|

5. Estimation and simulation

In this section, we estimate the parameters of the NEx-APT distribution via the method of maximum
likelihood and provide Monti Carlo simulation to evaluate the performance of these estimators.

5.1. Maximum likelihood estimation

Let xy, x2, ..., x, be observed values of a random sample from NEx-APT distribution with parameters
(a1,, &). The log-likelihood function of this sample is

(®) = nlog(ay - )+ Y log f (xi:6) + > log {log (@) af ™ + B} (5.1
i=1 i=1

where, © = (a;,8,&)" be the 3 x 1 parameter vector. The partial derivatives of (5.1) are

s

oe _ _n Z": {log (1) F (x;3€) + 1} ot !
da (=P 5 {log (@) ] + B}
O  on |
B (@-p {log (@) o} +[3} ’
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and

20©®) _ Z of (6 10 Z (log (1)) &} “OF (x;:€) |0¢
o0& —~ [ é) — {log (1) a,f(x;;f) + 5’} )

Setting (0/0a){(®), (0/9B)C(®), and (0/0£)((O) equal to zero and solving numerically these
expressions simultaneously, yields the maximum likelihood estimates of (a, 3, £).

5.2. Asymptotic confidence bounds

In this subsection, we derive the asymptotic confidence intervals of the unknown parameters of the
NEx-APT distributions. The simplest large sample approach is to assume that the maximum likeli-
hood estimators (d, 3, £) are approximately multivariate normal with mean (a1, 3, £) and covariance
matrix I, ! where Iy !is the inverse of the observed information matrix defined by

[ 0%0(@) %) 5*(O) ]
dar da10  Oa10¢ var (&) COV(@I,B) COV(@I’E)
2 2 2 ~ ~ ~
el G T 2 | | o) ) e
(@) FUO) 9*(O) cov(&d1) cov(&p) var(§)
| 000y OEOB 0¢?

The second partial derivatives included in /j I are given as follows

2@ & (loga) {oy ! + Bllogar) OF (x: ) /0¢) + 2Bay")

060y 4 ((log @) + B)Z ’
PUO) | af 7! {(1og @) BF (x;6% + B+ a; ol O (F (6 - 1) - af <"‘f"‘}
day i=1 ((log ai) af(x;g) + B)z ’

PO < a) P OF (x:8) /06 |(logan) oy ™ + Blog )’ (OF (x:€) /9€) + B

e 4 ((ogan) ™ + 3
. Z f ) (0P f (x:6) |082) - (Of (x:6) 0¢)?
s (f (6 ’
Pe©) & llogan) F (g + ha !
00 (1 -p) % ((log a)al ™ +,/§)2
N N 1
B @B ((logar)a’ P + B

and
P6@©) _ <~ (logan) ot (OF (x;€) 19€)
PO ((log a)al ™ + [3)2
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Figure 2: Plots of the estimated parameters and MSEs of the new extended alpha power transformed Weibull
distribution for Table 1. MSE = mean squared error.

The above approach is used to derive the (1 — §)100% confidence intervals for the parameters a;, S,

and ¢ as in the following forms &, + Zs/, yvar(@;), [3 +Zsp wlvar(ﬁ), and é +Zs/2 A /var(é), where Zs)»

is the upper (6/2)" percentile of the standard normal distribution.

5.3. Simulation study of the NEx-APTW distribution

In order to evaluate the performances of the maximum likelihood estimators of the (o, 3, £), a simu-
lation study is conducted. The process is carried out as:

1. We generate N = 750 samples of sizes n = 25,50, ...,750 from the NEx-APTW distribution.
2. Initial values for the parameters are selected as given in Table 1.

3. Compute the biases and MSEs given by Bias(W) = (1/750) ¥.7°Y(#; — w) and MSE(W) = (1/750)

Zf?(vf/[ —w)?, forw = (a, B, &), respectively.

6. Actuarial measures of the NEx-APTW distribution

One of the most important tasks of actuaries is to evaluate the exposure to market risk in a portfolio
of instruments, which arise from changes in underlying variables such as prices of equity, interest
rates or exchange rates. In this section, we calculate two well-known and important risk measures
Value at Risk (VaR) and Tail VaR (TVaR) for the proposed distribution, which play a crucial role in
portfolio optimization under uncertainty. Furthermore, based on these measures, a simulation study is
performed and we show that the proposed distribution has heavier tails the Weibull and exponentiated
Weibull (EW) distributions.

6.1. Value at risk

In the context of actuarial sciences, the measure VaR is widely used by practitioners as a standard
financial market risk. It is also known as the quantile risk measure or quantile premium principle. VaR



Table 1: Simulation results for different combination of parameters values of new extended alpha power

transformed Weibull distribution
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a;=12,0a=05,y=1,=09

n Parameters MLE Bias MSE
@ 2.905 1.705 7.485

05 a 2.197 1.697 6.860
» 4.098 3.098 12.38

B 1.718 0.818 3.805

@ 2.550 1.350 6.123

50 & 1.914 1.414 5.932
¥ 3.569 2.569 10.25

B 1.682 0.782 3.525

@ 1.945 0.745 3.829

100 & 1.565 1.065 4.843
¥ 2.825 1.825 7.272

B 1.603 0.703 3.020

@ 1.792 0.592 2.957

150 a 1.225 0.725 3.381
¥ 2.400 1.400 5.543

B 1.382 0.482 2.127

@ 1.398 0.198 1.127

. a 0.844 0.344 1.718
¥ 1.695 0.695 2767

B 1.084 0.184 0.951

@ 1.270 0.070 0.545

350 & 0.739 0.239 1.192
¥ 1.452 0.452 1.790

B 1.035 0.865 0.681

@ 1.245 0.045 0.309

450 & 0.590 0.090 0.495
¥ 1.266 0.266 1.044

B 0.948 0.048 0.268

@ 1.216 0.016 0.157

550 a 0.578 0.078 0.410
¥y 1.169 0.169 0.671

B 0.929 0.029 0.196

@ 1.226 0.026 0.143

650 a 0.549 0.049 0.244
¥ 1.183 0.083 0.331

B 0.934 0.014 0.101

@ 1.194 0.005 0.031

750 a 0.520 0.040 0.189
» 1.052 0.052 0.209

B 0.920 0.010 0.096

MLE = maximum likelihood estimators; MSE = mean squared error.

of a random variable X is the ¢ quantile of its cdf and specified with a given degree of confidence
say g (typically 90, 95, or 99%), see Artzner (1999). If X has pdf (1.3), then the VaR of X is given by

where 1 is the solution of the expression /| + Bt—qg(a; —pB)—1=0.

x, = F'@),

6.1)
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Figure 3: Plot of the biases of the parameters of the new extended alpha power transformed Weibull distribution
for Table 1.

6.2. Tail value at risk

Another important measure is TVaR, also known as conditional tail expectation (CTE) used to quan-
tify the expected value of the loss given that an event outside a given probability level has occurred.
Let X follow the NEx-APTW distribution, then the TVaR of X is defined as

1 00
TVaR = —f xg (x;a1,B,€) dx. (6.2)
1 =g Jva,
Using (1.3) in (6.2), we have
ay ® a+l1-1 —yx® (1_3-’/*“) n
TVaR = —————— X e " |log(a)) +B|dx. (6.3)
A= 9@ —B) Jvr, [ B g

Using the series o7} = Y7 (log (@))" (x"/n!),we have

— ay T sl —yx® N (10g(a’1))i+1 v\ 7
TVaR = —— X e E — (1—6 ) +0
n:
i=1

dx,
(-9 (@1 -B) Jvar, )

or

52 O Op (14 1y (e 1 (VaR,))  T(E+ Ly (VaR,))
(1 -q) (@ -p) P AC @ -p

Based on actuarial measures, a simulation study is performed for the Weibull, exponentiated (EW)
and proposed model for the selected parameters values. A model with higher values of the Risk
measures (VaR and TVaR) is said to have a heavier tail. The simulated results provided in Tables 2
and 3 show that the proposed model has higher values of the risk measures than the other competitive
distributions.

Figure 4 displays the simulation results provided in Table 2; in addition, Figure 5 displays the
simulation results provided in Table 3.

TVaR =




Table 2: Simulation results for VaR abd TVaR of the NEx-APTW and other fitted distributions
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Distribution Parameters Level of significance VaR TVaR
0.700 3.695 11.208
0.750 4.674 12.617
0.800 5.995 14.447
. a=05 0.850 7.885 16.970
Weibull $=07 0.900 10.889 20.828
0.950 16.885 28.199
0.975 23.886 36.494
0.999 67.955 85.868
0.700 1.414 3.076
0.750 1.700 3.381
4205 0.800 2.060 3.758
EW 6=05 0.850 2.534 4.250
507 0.900 3.217 4.949
' 0.950 4.408 6.155
0.975 5.614 7.369
0.999 11.272 13.033
0.700 36.029 46.156
0.750 37.733 48.016
a1 =09 0.800 39.859 50.332
=05 0.850 42.665 53.380
NEx-APTW y=0.7 0.900 46.743 57.792
B=03 0.950 54.038 65.646
0.975 61.731 73.881
0.999 102.339 116.836
VaR = Value at Risk; TVaR = Tail VaR; EW = exponentiated Weibull; NEx-APTW = new extended alpha power trans-
formed Weibull.
- NEx. '
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Figure 4: Graphical sketching of the results provided in Table 2. VaR = Value at Risk; TVaR = Tail VaR; EW =
exponentiated Weibull; NEx-APTW = new extended alpha power transformed Weibull; W = Weibull.

7. An application to heavy tailed insurance data

Actuaries are looking for new distributions to provide an adequate fit to heavy tailed data in actuarial,
financial sciences and related areas. In this section, we analyze a real data set from insurance sciences
to demonstrate the flexibility of the NEx-APTW distribution. We also calculate actual measures of
the Weibull, EW, and NEx-APTW distributions using a real data set.
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Table 3: Simulation results for VaR abd TVaR of the NEx-APTW and other fitted distributions.

Distribution Parameters Level of significance VaR TVaR
0.700 3.601 15.695
0.750 4.831 17.998
0.800 6.593 21.084
. &=0.5 0.850 9.288 25.500
Weibull $=07 0.900 13.905 32.569
0.950 24.059 46.976
0.975 37.119 64.354
0.999 137.146 185.066
0.700 1.052 2.439
0.750 1.286 2.694
4=05 0.800 1.582 3.010
EW 5=05 0.850 1.976 3.424
9207 0.900 2.548 4.015
' 0.950 3.554 5.039
0.975 4578 6.072
0.999 9.398 10.902
0.700 56.131 78.680
0.750 59.724 82.844
a; =09 0.800 64.265 88.080
=05 0.850 70.352 95.060
NEx-APTW 9 =07 0.900 79.371 105.338
B=03 0.950 95.977 124.064
0.975 114.069 144.267
0.999 217.212 257.047

VaR = Value at Risk; TVaR = Tail VaR; EW = exponentiated Weibull; NEx-APTW = new extended alpha power trans-

formed Weibull.
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7.1. Hospital cost insurance data

Significance Level

TVaR
100 150 200 250

50

---- TVaR-NEx-APTW
~ TVaR-EW
o TVar-W

0.70 0.75 0.80 0.85

T T T
0.90 0.95 1.00

Significance Level
Figure 5: Graphical sketching of the results provided in Table 3. VaR = Value at Risk; TVaR = Tail VaR; EW =
exponentiated Weibull; NEx-APTW = new extended alpha power transformed Weibull.

The data set representing hospital costs in the state of Wisconsin is published by the Office of the
Health Care Information, Wisconsin’s Department of Health and Human Resources. The data set is
available at: https://www.dhs.wisconsin.gov/stats/index.htm. The comparison of the proposed method
is made with the other ten (two, three and four parameters) well-known distributions. The cdf’s of the
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competitive distributions are:
1. Weibull distribution

Gx)=1-¢7, x>0, a,y>0.

2. Ex-APTW distribution

(176—7)"’) B e(l—efwﬂ)

a
G(x) = ! po— , x20, a,a,y >0, a; £e.
-

3. Lomax distribution

GX)=1-0+yx)™™, x>0, a,y>0.

4. Burr-XII (B-XII) distribution

Gx)=1-0+x)", x20,a7y>0.
5. Pareto distribution

»y(l
G(x):l—(—) , x>0, a,y>0.
x

6. The alpha power transformed Weibull (APTW) distribution

al—e’”ﬂ)_l
G(x)= la—l x20, aj,a,y >0, a; # 1.
=

7. The Marshall-Olkin (MOW) distribution

(1-c)

GO = T d—odem)

x>0, a,y,0 > 0.
8. EW distribution
Gx) = (1 - e_yxa)a, x>0, a,y,a > 0.
9. Kumaraswamy Weibull (Ku-W) distribution
av b
G(x) = 1—{1—(1—671/A ) } , x>0, a,v,a,b>0.

10. The beta Weibull (BW) distribution

G(x) = I(l_ema) (a,b), x=0, a,v,a,b>0.
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Table 4: Estimated values with standard error (in parenthesis) of the proposed and other competitive models for
the hospital cost insurance data

Distribution ay & y o B a b
NEx-APTW 3.419 (2.751) 0.696 (0.028) 1.469 (0.231) 0.521 (1.613)
Ex-APTW  3.893 (2.751) 0.865 (0.183) 1.665 (0.069)
Weibull 0.674 (0.022) 1.918 (0.084)
Lomax 1.569 (0.207) 0.365 (0.074)
B-XII 2.885(0.129) 0.813 (0.026)
Pareto 2.970 (0.420) 1.909 (2.895)
APTW 0.185(2.910) 1.229 (0.403) 0.762 (0.945)
MOW 0.808 (0.955) 1.186 (0.863) 0.387 (0.145)
EW 1.944 (0.459) 2.564 (0.261) 0.487 (0.063)
Ku-W 0.847 (0.805) 1.086 (1.290) 2.567 (2.906) 4.583 (1.095)
BW 0.441 (0.089) 0.828 (0.928) 2.097 (0.761) 3.804 (1.092)

NEx-APTW = new Ex-APTW; Ex-APTW = extended APTW; B-XII = Burr-XII; APTW = alpha power transformed
Weibull; MOW = Marshall-Olkin; EW = exponentiated Weibull; Ku-W = Kumaraswamy Weibull; BW = beta Weibull.

To determine the goodness-of-fit among the applied distributions, we consider certain goodness-
of-fit measures such as Cramer-Von-Messes (CM) test statistic, Anderson Darling (AD) test statistic
and Kolmogorov-Simonrove (KS) test statistic with corresponding p-value. The measure are given

by:
e The AD test statistic

n

Z (2i = 1) [log G (x;) + log {1 = G (xp—i+1)}],

i=1

AD = -n -

S|

where n = the sample size, x;
order.

the i sample, calculated when the data is sorted in ascending

e The CM test statistic

12n 2n

n . 2
CM=L+Z[2"1 —G(xi)].

e The KS test statistic is given by
KS = sup, [G, (x) - G ()],
where G,, (x) is the empirical cdf and sup, is the supremum of the set of distances.

A distribution with lower values of these analytical measures is considered as a good candidate
model among the applied distributions for the underlying data sets. Based on the considered mea-
sures, the NEx-APTW distribution has the lowest values among all fitted models for the hospital cost
insurance data. Table 4 reports parameter values with standard errors in parenthesis. In support of the
numerical measures provided in Table 5, the empirical cdf and sf of the NEx-APTW are plotted in
Figure 6. From Figure 6, we can see that the proposed model fit empirical cdf and sf very closely. In
addition, the PP plot of the NEx-APTW distribution for the respective data set is plotted in Figure 7
and shows that the proposed provide best fit to the considered data. The box plot of the data set is also
sketched in Figure 7 showing that the hospital cost insurance data is skewed to the right.
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Table 5: Goodness-of-fit measures of the proposed and other competitive models for the hospital cost insurance
data

Distribution CM AD KS p-value
NEx-APTW 0.093 0.890 0.031 0.695
Ex-APTW 0.109 0.932 0.034 0.585
Weibull 0.112 0.936 0.035 0.035
Lomax 0.464 2.623 0.078 0.002
B-XII 0.250 1.426 0.045 0.229
Pareto 0.560 1.708 0.058 0.247
APTW 0.152 0.957 0.038 0.414
MOW 0.155 0.961 0.037 0.447
EW 0.168 0.997 0.049 0.150
Ku-W 0.159 0.944 0.039 0.396
BW 1.948 1.912 0.197 0.206

CM = Cramer-Von-Messes; AD = Anderson Darling; KS = Kolmogorov-Simonrove; NEx-APTW = new Ex-APTW; Ex-
APTW = extended APTW; B-XII = Burr-XII; APTW = alpha power transformed Weibull; MOW = Marshall-Olkin; EW
= exponentiated Weibull; Ku-W = Kumaraswamy Weibull; BW = beta Weibull.

1.0
|

1.0
1

06

Estimated cdf
04
Kaplan-Meier Survival Plot

0.0
|
00

Figure 6: Estimated cdf and Kaplan-Meier survival plots of the new extended alpha power transformed Weibull
distribution for the hospital cost insurance data.

7.2. Computation of actuarial measures using real data set

In this sub-section, we compute VaR and TVaR measures of Weibull, EW and the NEx-APTW distri-
butions using estimated parameters values analyzed in Subsection 7.1. Table 6 reports the numerical
results. A model with higher values of the risk measures possesses the heavier tails. The numerical
results for the actuarial measures of the proposed and the other distributions show that the proposed
distribution has a heavier tail than Weibull and EW distributions. In addition, it can be used as a good
candidate model for modeling heavy tailed insurance data sets.

8. Concluding remarks

In this article, a new family of distributions called a new extended alpha power transformed family
has been proposed. The proposed method examines a four-parameter special model of a new ex-
tended alpha power transformed Weibull distribution. Actuarial measures of the proposed model are
also calculated and a simulation study is conducted to show the usefulness of the proposed method in
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Figure 7: PP plot of the new extended alpha power transformed Weibull distribution and box plot for the hospital
cost insurance data.

Table 6: Results for the actuarial measures using health care insurance data

Distribution Parameters Level of significance VaR TVaR
0.700 0.710 0914

0.750 1.047 1.275

0.800 1.323 1.709

. &=0674 0.850 1.793 1.907
Weibull »=1918 0.900 2.134 2.086
0.950 2.600 2395

0.975 2.906 2.706

0.999 3.145 2.875

0.700 0.023 0.021

0.750 0.108 0.067

. 0.800 0.290 0.153

EW Z - (1)';347; 0.850 0.787 0.490
5 = 2564 0.900 0.973 0.630

: 0.950 1.122 0.959

0.975 1.645 1.141

0.999 1.760 1.397

0.700 0.925 1.563

0.750 1.754 2.901

@y =3.419 0.800 1.895 3396

& =0.696 0.850 2.365 5.303

NEx-APTW 7 =1.469 0.900 3.933 5.925
B=0521 0.950 4.884 6.964

0.975 5510 7313

0.999 6.339 7.890

VaR = Value at Risk; TVaR = Tail VaR; EW = exponentiated Weibull; NEx-APTW = new extended alpha power trans-
formed Weibull.

actuarial sciences. A practical application to the heavy tailed insurance data is analyzed and the com-
parison of the proposed model with the other nine well-known competitors are presented. Actuarial
measures based on a real data set is also calculated which shows that the proposed model may be a
good candidate model to analyze actuarial data sets. We hope that the proposed method will attract a
wider applications in actuarial sciences and related fields.
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This work is a methodological development and has been applied on secondary data related to the
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