• Title/Summary/Keyword: 1-D nuclear system analysis code

Search Result 31, Processing Time 0.022 seconds

Analysis and comparison of the 2D/1D and quasi-3D methods with the direct transport code SHARK

  • Zhao, Chen;Peng, Xingjie;Zhang, Hongbo;Zhao, Wenbo;Li, Qing;Chen, Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The 2D/1D method has become the mainstream of the direct transport calculation considering the balance of accuracy and efficiency. However, the 2D/1D method still suffers from stability issues. Recently, a quasi-3D method has been proposed with axial Legendre expansion. Analysis and comparison of the 2D/1D and quasi-3D method is conducted in theory from the equation derivation. Besides, the C5G7 benchmark, the KUCA benchmark and the macro BEAVRS benchmark are calculated to verify the theory comparisons of these two methods with the direct transport code SHARK. All results show that the quasi-3D method has better stability and accuracy than the 2D/1D method with worse efficiency and memory cost. It provides a new option for direct transport calculation with the quasi-3D method.

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Analysis of Locked Rotor Event Using TASS Code

  • Lee, Byung-Il;Kim, Jong-Jin;Baek, Seung-Su;Um, Kil-Sub;Kim, Hee-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.598-603
    • /
    • 1996
  • When locked rotor event. occurs, instantaneously affected loop and core flow were quickly reduced, which resulted in an increase in coolant temperature and system pressure. Analysis method of this event was that constant core inlet temperature and system pressure as well as change in core flow calculated from COAST code were statically used as an input variable to HERMITE code, because of no tools to simulate NSSS behavior and 1-D core neutronics transient coincidently. With employing TASS code revised with 1-D neutronics model, this event was analyzed in point of DNBR. By doing so, analysis procedure could be simplified and unreasonable conservatism might be removed in DNBR calculation by consideration of pressure increase.

  • PDF

Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system

  • Yu, Jiankai;Lee, Hyunsuk;Kim, Hanjoo;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.661-673
    • /
    • 2020
  • The quarter-core simulation of BEAVRS Cycle 2 depletion benchmark has been conducted using the MCS/CTF coupling system. MCS/CTF is a cycle-wise Picard iteration based inner-coupling code system, which couples sub-channel T/H (thermal/hydraulic) code CTF as a T/H solver in Monte Carlo neutron transport code MCS. This coupling code system has been previously applied in the BEAVRS benchmark Cycle 1 full-core simulation. The Cycle 2 depletion has been performed with T/H feedback based on the spent fuel materials composition pre-generated by the Cycle 1 depletion simulation using refueling capability of MCS code. Meanwhile, the MCS internal one-dimension T/H solver (MCS/TH1D) has been also applied in the simulation as the reference. In this paper, an analysis of the detailed criticality boron concentration and the axially integrated assembly-wise detector signals will be presented and compared with measured data based on the real operating physical conditions. Moreover, the MCS/CTF simulated results for neutronics and T/H parameters will be also compared to MCS/TH1D to figure out their difference, which proves the practical application of MCS into the BEAVRS benchmark two-cycle depletion simulations.

Numerical simulation on in-vessel molten corium behavior with external vessel cooling using smoothed particle hydrodynamics

  • Tae Hoon Lee;Yeon-Gun Lee;Kukhee Lim;Yun-Jae Kim;So-Hyun Park;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4018-4030
    • /
    • 2024
  • The in-vessel retention through external reactor vessel cooling (IVR-ERVC) strategy is a key management strategy for early termination of a nuclear severe accident that can threaten the integrity of the reactor vessel. To simulate the physical phenomena of the molten corium, the smoothed particle hydrodynamic (SPH) method is utilized in this study. The SPH method is a Lagrangian computational fluid dynamic (CFD) method that can simulate multi-fluid stratification, turbulence, natural circulation, radiative heat transfer, thermal ablation, and crust formation. To address the external vessel cooling, it is coupled with a conventional 1-D nuclear system analysis method. The 1-D system analysis code can calculate the two-phase natural circulation of cooling water and the convective heat transfer on the external reactor vessel wall. These two simulation codes exchange the temperature and heat flux of the reactor vessel outer wall. This study numerically simulated the IVR-ERVC strategy for a Korean high-power reactor and compared it with the traditional lumped parameter method (LPM). Unlike LPM, this study provides localized detailed data about the thermal hydraulic behavior of molten corium and visualization of phenomena in the IVR-ERVC strategy. This enhances our understanding of the phenomena in IVR-ERVC strategy and introduces new perspectives.

TOKAMAK REACTOR SYSTEM ANALYSIS CODE FOR THE CONCEPTUAL DEVELOPMENT OF DEMO REACTOR

  • Hong, Bong-Guen;Lee, Dong-Won;In, Sang-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Tokamak reactor system analysis code was developed at KAERI (Korea Atomic Energy Research Institute) and is used here for the conceptual development of a DEMO reactor. In the system analysis code, prospects of the development of plasma physics and the relevant technology are included in a simple mathematical model, i.e., the overall plant power balance equation and the plasma power balance equation. This system analysis code provides satisfactory results for developing the concept of a DEMO reactor and for identifying the necessary R&D areas, both in the physics and technology areas for the realization of the concept. With this system analysis code, the performance of a DEMO reactor with a limited extension of the plasma physics and technology adopted in the ITER design. The main requirements for the DEMO reactor were selected as: 1) demonstrate tritium self-sufficiency, 2) generate net electricity, and 3) achieve a steady-state operation. It was shown that to access an operational region for higher performance, the main restrictions are presented by the divertor heat load and the steady-state operation requirements.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

STATE OF THE ART IN USING BEST ESTIMATE CALCULATION TOOLS IN NUCLEAR TECHNOLOGY

  • D'AURIA FRANCESCO;ANIS BOUSBIA-SALAH;PETRUZZI ALESSANDRO;NEVO ALESSANDRO DEL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.11-32
    • /
    • 2006
  • System thermal-hydraulic codes have been used in the past decades in the areas of design, operation, licensing and safety of Nuclear Power Plants (NPPs). The development and validation of these codes have reached a high degree of maturity, through the consideration of huge experiments and advanced numerical models. Nowadays, the analyses are based upon realistic approaches rather than the conservative evaluation models. However the applications of these computational tools require preliminary qualification issues. Although huge amounts of financial and human resources have been invested for the development and improvement of codes, the calculation results are still affected by errors. In the sophisticated nuclear technology, design and safety of NPP, these errors must be quantified. An overview of the state of the art of the current thermal-hydraulic system code is developed and the need of uncertainty analysis in code calculations is emphasized. Several sources of uncertainty have been classified and commented, and typical applications of such methods are shown.

An Evaluation of ACI 349 Code for Shear Design of CIP Anchor (직매형 앵커기초의 전단설계를 위한 ACI 349 Code의 평가)

  • Jang Jung-Bum;Hwang Kyeong-Min;Suh Yong-Pyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.464-470
    • /
    • 2005
  • The numerical analysis is carried out to identify the influence of design factors to shear capacity of cast-in-place (CIP) anchor in ACI 349 Code that is available for the design of fastening system at Nuclear Power Plant (NPP) in this study. The MASA program is used to develop the numerical analysis model and the developed numerical analysis model is verified on a basis of the various test data of CIP anchor. Both $l/d_o$ and $c_1/l$ we considered as design factors. As a result, the variation of $l/d_o$ has no influence on the shear capacity of CIP anchor but $c_1/l$ has a large influence on the shear capacity of CIP anchor, Therefore, it is proved that ACI 349 Code may give a non-conservative results compared with real shear capacity of CIP anchor according to $c_1/l$.

  • PDF