• Title/Summary/Keyword: 1 dB compression point

Search Result 74, Processing Time 0.021 seconds

New Method for Predicting the 1 dB Gain Compression Point (1dB 이득 억압점을 예측하기 위한 새로운 방법)

  • 방준호;엄순영;김석태;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1793-1801
    • /
    • 1994
  • In this paper, a new method for predicting the 1 dB gain compression point of cascaded N amplifiers is proposed. With the proposed method, the transfer function of each amplifier is derived from scalar data available from the manufacturers data sheet and all transfer functions are producted with scalar in order to also derive the overall transfer function of the subsystem under the assumption that the input and output port of each amplifier are matched. Therefore, the 1 dB gain compression point of the subsystem can be predicted or estimated, reversely, utilizing the overall transfer function obtained with the proposed method. The proposed method can be used irrespective of the number of scalar data but, in this paper, it is analyzed only with two scalar data (linear power gain and 1 dB gain compression point) and three scalar data(linear power gain, 1 dB and 0.5 dB gain compression points). With two sample amplifiers operated in Ku-band, the predicted results by the proposed and previous method, respectively, and the experimental results are together presented in order to confirm its utility.

  • PDF

A Study on the Fabrication of 1W Power Amplifier for IMT2000 Repeater Using Nonlinear Analysis (비선형 해석법을 이용한 IMT2000 중계기용 1W 전력증폭기 제작 연구)

  • 전광일
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.83-90
    • /
    • 2000
  • A simple low-cost and small size 1.88-198 GHz Band RF power amplifier module is developed for IMT2000 repeater. The power amplifier consists of two stage amplifiers that the first stage amplifier is drive amplifier using discrete type P-HEMT (ATF-34143, 800 micron gate width, Agilent Technologies) and the second is power amplifier with 300Bm 1dB gain compression point using GaAs FET(EFA240D-SOT89, 2400 micron gate width, Excelics Semiconductor). this power amplifier module feature a 29.5dBm 1dB gain compression point, 29.5dB gain, 42dBm 3rd order intercept point(OIP3) and -10dB/-l2dB input/output return loss over the 1880-1980 MHz. This PA module is fully integrated using MIC technology into a small size and design by full nonlinear design technologies. The dimensions of this PA module are 42(L) $\times$ 34(W) mm.

  • PDF

A Dual-Mode Mixer for Multi-Band Radar Signal Reception (다중 대역 레이더 신호 수신을 위한 이중 모드 주파수 혼합기)

  • Go, Min-Ho;Kim, Hyoung-Joo;Nah, Sun-Phil;Kim, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1047-1054
    • /
    • 2013
  • In this paper, we propose a dual-mode mixer to have multi-band radar signal receiver to be compact. The proposed mixer using a anti-parallel diode is operated as a fundamental mixer or sub-harmonic mixer with respect to a control voltage. A fundamental mixer with a control voltage show a conversion loss of -10 dB, 1dB compression point of 2 dBm at X-band. On the other hand, it is performed as a sub-harmonic mixer with a conversion loss of -10 dB, 1 dB compression point of 2 dBm at K-band.

2 GHz Down Conversion MMIC Mixer using SiGe HBT Foundry (SiGe HBT 공정을 이용한 2 GHz Down Conversion MMIC Mixer 개발)

  • S.-M. Heo;J.-H. Joo;S.-Y. Ryu;J.-S. Choi;Y.-H. Nho;B.-S. Kim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • In this paper, a double balanced gilbert cell MMIC mixer was realized in Tachyonics SiGe HBT technology. The fabricated mixer has 17 dB conversion gain, 9.8 dB noise figure, -4.2 dBm output 1 dB compression point, -27 dBc RF to IF isolation, and the good input, output matching characteristics. It draws 10 mA from a 3 V supply. The simulation and the measured results are closer to each other, which confirms accuracy of the model library and reliability of the process.

Dynamic Range Improvement of Digital Receiver (디지털 수신기의 Dynamic Range 개선방안)

  • Hwang, Hee-Geun;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2012
  • In this paper, In this paper, we consider a dynamic range in the frequency converter to obtain a high conversion gain and linearity while operating area proposed to broaden the design. Super-heterodyne RF Front-End style was applied to the active mixer stage, GaAs devices were used. Circuit design easy and simple forms benefit circuit is constructed in the drain mixer, passive mixer with the operating area were compared and analyzed. The simulation results of the conversion gain of 2.4dB and 0.2dBm about a gain-compression point, and showed the dynamic range of 71.9dB, when compared with passive mixers, dynamic range of approximately 6dB improvement was identified. Measurements of an approximately 2dB conversion gain and-1.0dBm of the gain-compression point, and confirmed that the active area of 71.1dB. When compared with passive mixers, dynamic range of is reduced by approximately 8dB has been improved.

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier

  • Yoon, Jaehyuk;Park, Changkun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.454-460
    • /
    • 2019
  • In this paper, a watt-level 2.4-GHz RFCMOS linear power amplifier (PA) with pre-distortion method using variable capacitance with respect to input power is demonstrated. The proposed structure is composed of a power detector and a MOS capacitor to improve the linearity of the PA. The pre-distortion based linearizer is embedded in the two-stage PA to compensate for the gain compression in the amplifier stages, it also improves the output P1dB by approximately 1 dB. The simulation results demonstrate a 1-dB gain compression power of 30.81 dBm at 2.4-GHz, and PAE is 29.24 % at the output P1dB point.

Design and Fabrication of K-band multi-channel receiver for short-range RADAR (근거리 레이더용 K대역 다채널 전단 수신기 설계 및 제작)

  • Kim, Sang-Il;Lee, Seung-Jun;Lee, Jung-Soo;Lee, Bok-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, K-band multi-channel receiver was designed and fabricated for low noise amplification and down conversion to L-band. The fabricated multi-channel receiver incorporates GaAs-HEMT LNA(Low noise amplifier) which provides less than a 2 dB noise figure, IR(Image Rejection) Filter for rejection of image frequency, IR(Image rejection) mixer to reject a image frequency and improve an IMD(Intermodulation Distortion) characteristic. Test results of the fabricated multi-channel receiver show less than a 3.8 dB noise figure, conversion gain of more than 27dB, and IP1dB(Input 1dB Gain Compression Point) of -9.5 dB and over.

Single-Balanced Low IF Resistive FET Mixer for the DBF Receiver

  • Ko Jee-Won;Min Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.143-149
    • /
    • 2004
  • This paper describes characteristics of the single-balanced low IF resistive FET mixer for the digital beam forming(DBF) receiver. This DBF receiver based on the direct conversion method is designed with Low IF I and Q channel. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(IF) considered in this research are 1950 MHz, 1940 MHz and 10 MHz, respectively. Super low noise HJ FET of NE3210S01 is considered in design. The measured results of the proposed mixer are observed IF output power of -22.8 dBm without spurious signal at 10 MHz, conversion loss of -12.8 dB, isolation characteristics of -20 dB below, 1 dB gain compression point(PldB) of -3.9 dBm, input third order intercept point(IIP3) of 20 dBm, output third order intercept point(OIP3) of 4 dBm and dynamic range of 30 dBm. The proposed mixer has 1.0 dB higher IIP3 than previously published single-balanced resistive and GaAs FET mixers, and has 3.0 dB higher IIP3 and 4.3 dB higher PldB than CMOS mixers. This mixer was fabricated on 0.7874 mm thick microstrip $substrate(\varepsilon_r=2.5)$ and the total size is $123.1\;mm\times107.6\;mm$.

An Ultra Wideband Low Noise Amplifier in 0.18 μm RF CMOS Technology

  • Jung Ji-Hak;Yun Tae-Yeoul;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.112-116
    • /
    • 2005
  • This paper presents a broadband two-stage low noise amplifier(LNA) operating from 3 to 10 GHz, designed with 0.18 ${\mu}m$ RF CMOS technology, The cascode feedback topology and broadband matching technique are used to achieve broadband performance and input/output matching characteristics. The proposed UWB LNA results in the low noise figure(NF) of 3.4 dB, input/output return loss($S_{11}/S_{22}$) of lower than -10 dB, and power gain of 14.5 dB with gain flatness of $\pm$1 -dB within the required bandwidth. The input-referred third-order intercept point($IIP_3$) and the input-referred 1-dB compression point($P_{ldB}$) are -7 dBm and -17 dBm, respectively.

Design of Reconfigurable Mixer for Microwave Broadband Receiver (마이크로웨이브 광대역 수신단 구성을 위한 재구성 주파수 혼합기 설계)

  • Kim, Jae-Hyun;Jo, Yun-Hyun;Kim, Sang-Wook;Go, Min-Ho;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.533-539
    • /
    • 2015
  • In this paper, we designed a reconfigurable mixer for microwave broadband receiver. The proposed mixer using a anti-parallel diode is operated as a fundamental mixer or sub-harmonic mixer with respect to a control voltage. A fundamental mixer with a control voltage show a conversion loss of -10 dB, 1 dB compression point of 2.0 dBm at X-band/ Ku-band. On the other hand, it is performed as a sub-harmonic mixer with a conversion loss of -17 dB, 1 dB compression point of 2.0 dBm at Ka-band.