• Title/Summary/Keyword: 1차 에너지소요량

Search Result 6, Processing Time 0.057 seconds

A Comparative Analysis of Energy Performance according to the Ventilation System in Apartment House (공동주택의 환기시스템별 에너지성능 비교 분석)

  • Kim, Gil-Tae;Chun, Chu-Young;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2015
  • The purpose of this study was to comparative analyses of energy performance in apartment houses adopted window frame-type natural ventilation, under-floor air distribution ventilation and heat recovery ventilation. As the object of energy simulation, the three type ventilation system with area of $84m^2$ was selected in apartment house. As a result, when the ECO2 simulation was performed, the 1st requirement quantity per annual were $159.9kWh/m^2yr$(CASE1, Natural Ventilation), $179.7kWh/m^2yr$(CASE2, Under-floor Air Distribution Ventilation) and $161.0kWh/m^2yr$(CASE3, Heat Recovery Ventilation).

A study on the relationship between the existing building load for the advance ZEB certification system (ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구)

  • Lee, Hangju;Maeng, Sunyoung;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In accordance with the implementation of the Zero Energy Building Certification System, it for the activation and expansion of the private sector is being steadily upgraded. Also The government has set up a step-by-step mandatory roadmap until it is expanded to the private sector, starting with the public sector. We analyzed the energy requirements of existing buildings from 2016 to 2017 and the by load relationships of major factor. Of the existing buildings, 714 buildings in central and southern areas excluding residential buildings such as apartments and officetels were classified and their primary energy requirements were analyzed. As new design technologies are applied, the demand for energy from the passive side is steadily declining. In addition, there is a need to interpret various methods to improve the zero energy building certification standard in the point that the zero energy building pilot project is continuously carried out in relation to the activation of renewable energy supply.

A Study on the Calculation Method of Load standard for ZEB activation (ZEB 활성화를 위한 부하기준 산정 방법 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.92-99
    • /
    • 2017
  • In Korea, the zero energy building was designated as the 7 new industries in the Ministry of Land and the 8 new industries in the Ministry of Industry. In order to maximize the insulation performance of the building envelope, improve the efficiency of building equipment, We are aiming. It is necessary to analyze the energy requirements of the buildings (cooling, heating, hot water supply, lighting, ventilation) of buildings with energy efficiency level of 1++ which is equivalent to the zero energy building certification system in Korea, It is aimed to be used as basic data for the advancement of energy building certification system. Zero Energy Building certification is estimated to be 61 buildings by 2017, and the approximate reference value and the first energy requirement for each of the five loads are calculated considering passive and active aspects. It is difficult to say that it is a clear standard because there is a small sample of data for calculating the load standard. However, it is necessary to interpret various methods in order to upgrade the Zero Energy Building certification standard in the future.

An Experimental Study on a Performance Evaluation of Internal Insulation of Buildings Over 20 Years Old (20년 이상 경과된 노후건축물의 단열재 성능평가에 관한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Recently, the international community signed a climate change agreement to prevent global warming. Yet currently, the fossil fuels have been widely used in to supply building energy for cooling and heating. The Green Building certification (G-SEED), an energy efficiency rating for new or existing buildings requires that buildings meet certain conditions. Insulation is used as a building material to reduce the energy supply to buildings and to improve the thermal insulation, and it accounts for more than 90% of the total heat resistance provided by the building surface components that meet the energy-saving design standards of new buildings. In this investigation, a performance evaluation study was conducted through an experimental study by directly extracting the foam polystyrene insulation on-site during the remodeling of a building that was in the range of 22~38 years old. Through tests, it was found that the thermal conductivity of the extrusion method insulation (XPS) was reduced by 48% and the compressive strength of XPS decreased by 36% compared to KS M 3808, which is the initial quality standard. For bead method insulation (EPS) with a thickness of 50mm, the thermal conductivity, the compressive strength, and flexural failure load were similar to the initial quality standard. Therefore, in the calculation of the primary energy requirement per unit area per year, the performance of bead method insulation can be estimated simply by considering the thickness of the insulation, while a correction factor that considers its performance deterioration should be applied when extrusion method insulation is used.

Comparing the actual heating energy with calculated energy by the amended standard building energy rating system for apartment buildings (건축물에너지효율등급 평가프로그램에 의한 공동주택 난방에너지 소요량과 실제 사용량 비교)

  • Lee, A-Ram;Kim, Jeong-Gook;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong;Song, Kyoo-Dong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.103-107
    • /
    • 2015
  • Purpose: Since September 1st, 2013, subjects of the evaluation have been expanded, and the evaluation standard has been detailed to enable Building energy rating system for all buildings. Accordingly, the new evaluation program (ECO2) has been developed, and therefore, apartment applied after September 1st, 2013 were evaluated with the new evaluation program. Therefore, this research suggests the improvement plan to figure out reasons for the evaluation result calculation and to calculate the evaluation results close to the actual energy usage by analyzing and comparing primary energy consumption as a result of the new evaluation program (ECO2) and actual heating energy usage on the same building. Method: When comparing evaluation results of the new evaluation program (ECO2) and actual heating energy usage, the tendency was similar but different. Also when comparing seasonally, the tendency was similar, but the different between actual heating energy usage and primary energy consumption during winter is greater than during spring or fall, and when comparing seasonal electric usage, heating alternatives were used through increased electrical usage during winter compared to during spring or fall. Result: Therefore, when evaluating apartment with the new program (ECO2) in the future, evaluation items relevant to the use of heating alternatives should be added, and the modification factor should be added according to the region. Based on the evaluation results of the research and actual energy usage, the Modification factors of the central part and the southern part were calculated respectively as 0.5 and 0.8.

The Economic Comparision through LCC Analysis on each Graded Alternatives for Green Remodeling of Public Building (공공건축물의 그린리모델링 수준별 LCC (Life Cycle Cost) 분석을 통한 경제성 비교)

  • Kim, Jaemoon;Lee, Junghyuk;Lee, Duhwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.38-49
    • /
    • 2018
  • Since the ratification of the Paris Agreement (COP21), the government is continuously strengthening policies for the reduction of greenhouse gas of the construction industry in accordance with the growing importance of reducing greenhouse gas and obligation of the government. Especially, the government emphasizes the need to improve the energy performance of old public buildings. Since 2014, the government is running a pilot project in which the government supports the construction cost of the green remodeling project of old public buildings and it is intended to develop the best practice of green remodeling and activate the green remodeling in the private sector. In this study, we analyzed the economical efficiency of the old public buildings by each level through green remodeling and conducted building related investigation and equipment measurement to plan the alternatives of the corresponding buildings. The improvement plan is a green remodeling plan that integrates alternatives. Five improvement plans were developed for each level to analyze the economic feasibility of each plan. As for the analysis method, the first energy demand amount calculation and the LCC analysis were performed through ECO2. In the LCC aspect, the improved 3/4 plan (middle level plan) was the most excellent and results were obtained in the order of the highest cost plan followed by the lowest cost plan. As a result, it is expected that it can be utilized as a basic data for future green remodeling performance plan and economic feasibility analysis in the future.