• Title/Summary/Keyword: 1방향굴진

Search Result 15, Processing Time 0.029 seconds

Recovery Execution in Collapsed Face of Soil-Tunnel Entrance When One-Way Driving (토사터널 1방향 굴진 시 발생한 갱구부 막장 붕락 보강사례)

  • Woo, Sang-Baik;Park, Jong-Ho;Lee, Hong-Sung;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.536-549
    • /
    • 2005
  • 국내 대부분을 차지하고 있는 NATM의 주요원리는 주변지반의 지보효과를 활용하는 터널굴착공법이다. 따라서 실제 지반조건이 원설계조건 보다 역학적으로 불량한 경우 보강공법의 적용은 필수적이라 할 수 있으나, 합리적인 설계변경은 현실적으로 쉽지 않은 실정이다. 또한 현실적인 이유로 양방향으로 터널을 관통하는 설계법과 달리 종종 1방향 굴진으로 터널을 관통하는 경우가 있다. 그러나 이러한 1방향 굴진은 불가분 굴진 종점부에서 저토피 갱구를 향하게 되므로, 지반이 연약한 경ㅇ우 막장 붕괴의 위험이 매우 높은 것으로 알려져 있다. 본 터널은 설계 시 갱구부 지반을 풍화암과 연암으로 보고 설계 하였으나, 실제 굴착 시 확인된 지층은 핵석을 포함한 실트질모래(SP-SM)로 판명되었다. 더구나 터널굴진 방향에 있어서도 양방향 굴착이 아닌 저토피 갱구를 향한 1방향 굴진을 실시하였으며, 이러한 시공 중에 터널관통을 불과 19m 남겨둔 갱구부에서 막장부괴와 동시에 상부사면 함몰이 발생하였다. 본 연구는 토사터널 갱구부 1방향 굴진 시 발생한 막장붕괴 보강사례로서, 지상보강(시멘트밀크 그라우팅)과 갱내보강(방사상 FRP보강그라우팅) 그리고 인버트폐합을 실시하여 성공적으로 터널시공을 완료한 사례연구이다. 본 사례는 향후 토사터널 갱구부의 설계와 시공에 유용한 참고자료가 될 것이다.

  • PDF

Longitudinal Arching Characteristics Around the Face of a Soil-Tunnel with Crown and Face-Reinforcement (굴진면 천단 및 수평보강에 따른 굴진면 전후의 종방향 아칭 특성)

  • Kwon Oh-Yeob;Choi Yong-Ki;Lee Sang-Duk;Kim Young-Gun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.133-144
    • /
    • 2004
  • Pre-reinforcement ahead of a tunnel face using long steel or FRP (Fiberglass Reinforced Plastic) pipes in NATM(New Austrian Tunnelling Method), known as the RPUM(Reinforced Protective Umbrella Method) or UAM (Umbrella Arch Method), is the promising method to sustain the stability of a shallow tunnel face and reduce the ground settlements. In addition, horizontal reinforcing of the face is recently emphasized to improve the stability of the face. However, the characteristics on longitudinal arching around the face have not yet been established quantitatively with the RPUM (crown-reinforcing) and/or the face horizontal reinforcing. In this study, therefore, the behavior of cohesionless soil around the face reinforced by the reinforcing member representing the RPUM and horizontal reinforcing is investigated through two-dimensional laboratory model tests. A series of tests were carried out on various conditions by changing lengths and angles of the reinforcing members. Based on the vertical pressure around the face, the characteristics of longitudinal arching have been found for the case of the non-reinforced and the reinforced.

Model Test and Numerical Analysis for Failure Behaviour of Shallow Tunnel Considering Unsupported Tunnel Length (굴진장을 고려한 얕은 터널파괴거동에 대한 모형실험 및 수치해석)

  • Kim, Young-Min
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.400-410
    • /
    • 2005
  • During excavation of shallow tunnels in soft ground, failure mechanism around the tunnel face have major influence on the stability of tunnels. In this paper, a series of laboratory tests under plane strain condition on the small scale of a shallow tunnel considering unsupported tunnel length has been performed. The results have shown that tunnel failure mechanism changes from failure mode 1 to failure mode 2 as unsupported tunnel length increases. By comparing the experimental and the numerical results, the loosening pressure for the shallow tunnel and progressive failure have been investigated.

Prediction of Fault Zone ahead of Tunnel Face Using Longitudinal Displacement Measured on Tunnel Face (터널 굴진면 수평변위를 이용한 굴진면 전방의 단층대 예측)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • We conducted three-dimensional finite element analysis to predict the presence of upcoming fault zones during tunneling. The analysis considered longitudinal displacements measured at tunnel face, and used 28 numerical models with various fault attitudes. The x-MR (moving range) control chart was used to analyze quantitatively the effects of faults distributed ahead of the tunnel face, given the occurrence of a longitudinal displacement. The numerical models with fault were classified as fault gouge, fault breccia, and fault damage zones. The width of fault cores was set to 1 m (fault gouge 0.5 m and fault breccia 0.5 m) and the width of fault damage zones was set to 2 m. The results, suggest that fault centers could be predicted at 2~26 m ahead of the tunnel face and that faults could be predicted earliest in the 45° dip model. In addition, faults could be predicted earliest when the angle between the direction of tunnel advance and the strike of the fault was smallest.

Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock (화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구)

  • Park, Hyunku;Oh, Ju-Young;Chang, Seokbue;Lee, Seungbok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • This paper presents a case study on the ground settlement and volume loss estimation for slurry pressure balanced shield TBM tunnelling in weathered zone of granite rock. Settlement at each stage of shield tunnelling was analyzed and the volume losses and settlement trough factors were estimated from observations. In addition, using the existing volume loss evaluation method in literature, volume losses were estimated considering ground properties and actual driving parameters. Most of ground settlement occurred during passage of shield skin passage and after backfill grouting, and the measured total volume loss and trough curves appeared to coincide with literature. Shield and tail loss obtained from field measurement were found to be around 90% and 60% of the predictions, where tail loss indicated larger deviation than shield loss.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

Prediction of Preceding Crown Settlement Using Longitudinal Displacement Measured on Tunnel Face in Fault Zone (단층대가 분포하는 터널에서 굴진면 수평변위를 이용한 선행 천단변위 분석)

  • Yun, Hyun-Seok;Do, Kyung-Ryang;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • Preceding displacements in tunnel are difficult to predict since the measurements of displacements after excavation can not be performed immediately. In the present study, The longitudinal displacements which can be measured immediately after excavation are used to predict the crown settlements occurring before excavation only if fault is located at the tunnel crown. Three-dimensional finite element analysis was conducted using 28 numerical models with various fault attitudes to analyze the correlation between the longitudinal displacements on tunnel face and preceding crown settlements. The results, $L_{face}/C$ ratio show 2~12% in the drives with dip models and 2~13% in the drives against dip models individually. In addition, each model has a certain $L_{face}/C$ ratio. The result of the regression analysis show that the coefficient of determination is over 0.8 in most models. Therefore, crown settlements occurring before excavation can be predicted by analyzing the longitudinal displacements occurring on tunnel faces.

An Experimental Study on the Two Dimensional Behaviors due to Excavation of Crossed Tunnel below existing tunnel (기존터널 하부에 교차하여 굴착되는 터널의 2차원 거동 특성에 대한 실험적 연구)

  • Hong, Suk-Bong;Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.119-131
    • /
    • 2005
  • The two dimensional behaviors of the existing upper tunnel and the ground at crossed area due to the excavation of a lower tunnel were studied experimentally, The model tests were conducted by changing the relative location of the existing upper tunnel and the lower tunnel. The results of the study show that a vertical earth pressure outside the loosened area was increased due to longitudinal arching effect same as a single tunnel. In case vertical distance between the upper and lower tunnel is 0.7 H and 1.0 H respectively (H is a height of the lower tunnel), vertical earth pressure increased in the loosened area behind the tunnel face. But when a vertical distance is 1, 3 H, ground behaviors appeared similarly to a single tunnel.

  • PDF

Operating Process of Transverse Type Roadheader for Tunnel Excavation in Korea (횡방향 타입 로드헤더의 터널면 절삭공정 고찰)

  • Min-Gi Cho;Jung-Woo Cho;Mun-Gyu Kim;Jae-Hoon Jeong;Sung-Hyun Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Roadheaders have been operated in the construction of Korean tunneling projects. The note introduces operation manual and management case of transverse type roadhead in a Korean tunneling site. The cutting and reaction forces of axial and transverse type cutting heads were qualitatively analyzed. The shaping surfaces of tunnel faces were visualized in both cases of fixed and auto-controlled telescopic cylinder conditions. Excavating with fixed cylinder, concave surfaces were shaped on tunnel face. The total processes of sumping and shearing were illustrated for excavating hard rock tunneling. The supplementary graphical explanations for total tunneling procedures in Korea were provided.

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.