• Title/Summary/Keyword: 1/1,000 Digital Map

Search Result 264, Processing Time 0.022 seconds

Acquisition of 3D Spatial Information using UAV Photogrammetric Method (무인항공 사진측량을 이용한 3D 공간정보 취득)

  • Jung, Sung-Heuk;Lim, Hyeong-Min;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.161-168
    • /
    • 2010
  • This study aims to propose a method that shall rapidly acquire 3D information of the fast and frequently changing city areas by using the images taken by the UAV photogrammetric method, and to develop the process of the acquired data. For this study's proposed UAV photogrammetric method, low-cost UAV and non-metric digital camera were used. The elements of interior orientation were acquired through camera calibration. The artificial 3D model of the artificial structures was constructed using the image data photographed at the target area and the results of the ground control point survey. The digital surface model was created for areas that were changed due to a number of civil works. This study also analyzes the proposed method's application possibility by comparing a 1/1,000 scale digital map and the results of the ground control point survey. Through the above studies, the possibilities of constructing a 3D virtual city model renewal of 3D GIS database, abstraction of changed information in geographic features and on-demand updating of the digital map were suggested.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

A Study on the Generation of DEM for Flood Inundation Simulation using NGIS Digital Topographic Maps (NGIS 수치지형도를 이용한 효율적인 홍수범람모의용 지형자료 구축에 관한 연구)

  • Kwon, Oh-Jun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.49-55
    • /
    • 2006
  • Nowadays, flood hazard maps have been generated to minimize the damages from the flooding. To generate such flood hazard maps, LiDAR data can be used as data source with higher data accuracy. LiDAR data, however, requires relatively higher cost and longer processing time. In this background, this study proposed DEM generation using NGIS digital topographic maps. For that, breaklines were processed to count directions of water flows. In addition, the river profile data, unique data source to represent real topography of the river area, were integrated to the breaklines to generate DEM. City of Kuri in Kyunggi Province was selected for this study and 1:1,000 and 1:5,000 topographic maps were integrated to process breaklines and river profile data were also linked to generate DEM. The generated DEM showed relatively lower vertical accuracy from mixing 1:1,000 and 1:5,000 topographic maps since 1:1,000 topographic maps were not available for some portion of the area. However, the DEM generated demonstrated reasonable accuracy and resolution for flood map generation as well as higher cost saving effects. On the contrary, for more efficient utilization of NGIS topographic maps, periodic map updating needs to be made including technical consideration in building breaklines and applying interpolation methods.

  • PDF

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

A Study on Application of SPOT5 Image for Renewal of Digital Map (수치지도 갱신을 위한 SPOT5 영상의 활용에 관한 연구)

  • Kang Joon Mook;Yun Hee Cheon;Park Joon Kyu;Um Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • With acquisition of satellite image being facilitated due to recent advancement in Electro optical and astronautic technologies, focus on establishment of Geoinformation and analysis using satellite images have increased. This research have conducted digital plotting and digitizing operation, utilizing stereo images and grey level images provided by SPOT5 satellite and evaluated the accuracy through comparison and analysis with digital map results. Digital plotting results acquired using stereo images have been compared and analyzed on the basis of scale 1:25,000 digital map results published by National Geographic Information Institute. Accuracy of 20 check points have showed RMSE results 5.369 m at X (Easting) and 4.718 m, digitizing using grey level images showed RMSE results 7.616 m in X (Easting) and Y (Northing) 6.532 m. This is within the allowance of accuracy standards for scale 1:25,000 maps, and although digitizing operation was confirmed to have lower accuracy than that of digital plotting, using the former is considered to be more effective in terms of economical efficiency.

A Preliminary Study for Implementation of Digital Geographic Information in Non-Urban Area (비도시지역 디지털 지리정보 구축을 위한 기초연구)

  • Kim, Jae-Myeong;Choi, Yun-Soo;Seo, Chang-Wan;Cho, Han-Keun
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.63-74
    • /
    • 2010
  • The construction of digital geographic information of Non-Urban Area have been needed to build a nationwide information infrastructure for the balanced development of nation to reduce a gap between city and Non-Urban Area due to the emphasis on a large scale digital map (1/1,000) implementation for cities. In this research, we researched the basic long-term blueprint for establishing digital geographic information in non-urban area. From the proposed institutional foundation, we want to build this information for Non-Urban Areas and to make a long-term plan to strengthen the national com petitiveness dealing with the globalization, liberalization, and information based on the digital geographic information in non-urban area. This study suggested 3 alternatives to implement digital geographic information of Non-Urban Area as follow. Firstly central government fund whole cost, secondly central government and local government fund a cost half and half, lastly combining first and second alternative. This study can be a basis on building national information infrastructure, provide core information for national projects and revitalize the use of spatial information for Non-Urban Area.

Accuracy Evaluation of ASTER DEM, SRTM DEM using Digital Topographic Map (1:5000 수치지형도를 이용한 ASTER DEM과 SRTM DEM의 구축정확도 평가)

  • Kang, Kyung-Ho;Kim, Chang-Jae;Sohn, Hong-Gyoo;Lee, Won-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.169-178
    • /
    • 2010
  • The main purpose of this study is to evaluate the feasibility and the accuracy of ASTER DEM and SRTM DEM covering 99% of the earth surface using large-scale Digital Topographic Map in mountainous area(Sokcho), mixed area(Jinan, mountainous area and even land area) and even land area(Anyang). We made DEM using contour lines of 1:5,000 Digital Topographic Map of study area and also acquired ASTER DEM and SRTM DEM of their corresponding area. In order to verify accuracy of DEM, this study compared ASTER DEM and SRTM DEM data using 15m resolution DEM generated from contour lines of Digital Topographic Map as basis for each study area. To evaluate the accuracy of ASTER and SRTM DEM data, statistical such as RMSE and correlation were calculated and histogram and scatter plot were drawn. The analysis result shows that, both ASTER DEM and SRTM DEM have high accuracy but in aspects of future availability, ASTER DEM covering larger areas bas relatively more potential than SRTM data.

Extraction of the Road Facility Information Using Digital Ortho-Image (정사투영영상을 활용한 도로시설 정보 추출)

  • 함창학;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2001
  • The research into the field of managing urban utility information (such as gas pipes, power line, telecommunication utilities) is growing ever more important as the efficient management of social infra-structure gets higher and also with the fast technological progress made in nationwide scale of geo-spatial information systems. This research is focused on the collection of street utilities information in urban areas using aerial ortho-images. Until now this has been carried out by on site investigation and ground surveying methods. The result of this research shows that the geometric accuracy was obtainable within 12 cm referenced to 1/1,000 digital map. It was also possible to collect the street utilities which were described in the digital map as well as other information which were not.

  • PDF

The Evaluation of Position Accuracy to 1:1,000 and 1:5,000 scale Digital Map (1:1,000 및 1:5,000 수치지도의 위치정확도 검증)

  • Lee, Hyun-Jik;Park, Hong-Kee;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.117-128
    • /
    • 1998
  • National digital maps (NDM) produced by diverse production methods through various stages are ready to distribute to public. The position accuracy problems in NDM should be inspected and evaluated to guarantee the quality of NDM. The purpose of this study is 1) to find out factors of impeding accuracy by examining the position accuracy of NDM on scales of 1:1,000 and 1:5,000, 2) to form the technical basis of making accurate digital maps and 3) to increase reliability and practical use of NDM. In this study, we found out 1) obstacles of making accurate mM especially in solving horizontal and vertical location accuracy problems and 2) error sources in production methods as well as stages. These results can be contributed to increase accuracy on modifying and upgrading NDM.

  • PDF

Geospatial Information Extraction by using Digital Photogrammetry (수치사진측량을 이용한 지형공간정보 추출)

  • Yeu, Bock-Mo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.81-91
    • /
    • 1999
  • The study on the updating of the database of Geo-Spatial Information System that is necessary condition to GSIS operation have executed actively. In this study, digital orthophotos were produced by using the product of digital photogrammetry process and then multiscale digital orthophoto maps were generated tv the concept of image pyramids. The produced digital orthophoto has 2.092 meters accuracy compared to 1:5,000 topographic map. This digital orthophoto can be implemented in various Geo-Spatial Information System, providing valuable spatial reference for other objects in the database.

  • PDF