• Title/Summary/Keyword: 1,4-dihydropyridine

Search Result 42, Processing Time 0.018 seconds

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (1,4-디하이드로피리딘 산류의 합성)

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.80-86
    • /
    • 1989
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methyl 5-(2'-phenylsulfinyl) ethyl ester (10) or 2,6-Dimethyl-4-(2' or 3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-alkyl 5-(2-methylsulfonyl) ethyl ester (14a, b, c) were hydrolyzed by treatment with NaOH in aqueous EtOH solution to give 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (4b), 2,6-Dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (4c) and 2,6-Dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monoisopropyl ester (4d) in 80 -90% yield. By the same procedure, 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3,5-bis (2'-methylsulfonyl) ethyl ester (15) gave 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid (4e) in 96% yield.

  • PDF

Dialkylaminomethylation of 1,4-Dihydropyridine (1,4-Dihydropyridine의 Dialkylaminomethyl화 유도체의 합성)

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.280-284
    • /
    • 1989
  • When 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-mono methyl ester(3) was reacted with dimethyl methylene ammonium chloride (5a) and $K_2CO_3$ in DMF, 2,6-dimethyl-4-(3'-nitrophenyl)-5-(N,N-dimethylamino)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6a) was obtained in 41% yield. As the same procedure with compound (3) and the other dialkylaminomethylating reagents (5b, c, d, e), 2,6-dimethyl-4-(3'-nitrophenyl)-5-(N,N-diethylamino)methyl-1,4-dihydropyridine-3-carboxylic acid methylester(6b), 2,6-dimethyl-4-(3'-nitrophenyl)-5-(1'-pyrrolidinyl)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6c), 2,6-dimethyl-4-(3'-nitrophenyl)-5-(1'-piperidinyl)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6d) and 2,6-dimethyl-4-(3'-nitrophenyl)-5-(1'-morpholinyl)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6e) were obtained in 28%, 49%, 48% and 18% yield respectively.

  • PDF

Synthesis of 1,4-Dihydropyridine-5-Formyl Derivatives (1,4-Dihydropyridine-5-Formyl 유도체의 합성)

  • Hong, You-Hwa;Suh, Jung-Jin
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.290-295
    • /
    • 1989
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid methyl ester (1) was formylated to 2,6-dimethy-4-(3'-nitrophenyl)-5-formyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (2) in 76% yield. At the elevated temperature, 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-monomethyl ester (3) was also converted into compound 2 in 46% yield. The compound 2 was reduced to 2,6-dimethyl-4-(3'-nitrophenyl)-5-hydroxymethyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (4) in 91% yield. Compound 2 was reacted with triethyl phosphonoacetate to give 2,6-dimethyl-4-(3'-nitrophenyl)-5-(2-ethoxycarbonyl ethenyl)-1,4-dihydropyridine-3-carboxylic acid methyl ester (5) in 50% yield. Reaction between compound 2 and amines (methyl amine, ethylamine, methoxylamine, hydroxyl amine, phenyl hydrazine and 1-amino-4-methyl piperazine) gave six schiff bases 7a, 7b, 7c, 7e, 7f in 81%, 91%, 82%, 81%, 50% and 84% yield, respectively.

  • PDF

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (III)

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.359-363
    • /
    • 1991
  • 2,6-Dimethyl-4-(3'-nitrophenyl)1,4-dihydropyridine-3,5-dicarboxylic acid 5-(2'-cyanoethyl) ester 10a reacted with chloromethyl methylsulfide to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methylthiomethyl 5-(2'-cyanoethyl) ester 11a in 88.1% yield. The synthesis of 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicrboxylic acid 3-methylthiomethyl ester 2a was achieved in 83% yield by alkaline hydrolysis of compound 11a in aqueous EtOH.

  • PDF

Synthesis of 3-Amino-1,4-dihydropyridine Derivative via an Intramolecular Rearrangement of 1,4-Dihydropyridine-3-hydroxamate

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.319-324
    • /
    • 1991
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-3-methoxylaminocarbonyl-1,4-dihydropyridine-5-carboxylic acid methylester, 3b reacted with 2-cyanoethanol or benzylalcohol to give the corresponding cyanoethylurethane compound 6c in 40.6% yield and benzylurethane compound 6d in 32% yield. The cyanoethylurethane 6c was hydrolized in ethanolic NaOH to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-amino-5-carboxylic acid 5-methyl ester. HCl 8 in 64.8% yield. Another acid hydrolysis of benzylurethane 6d gave 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-amino-5-carboxylic acid 5-methylester. HBr 11 in 54.7% yield.

  • PDF

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (II) (1,4-디하드로피리딘 산류의 합성(II))

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.4
    • /
    • pp.219-225
    • /
    • 1989
  • 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methyl 5-(2'-methylthio)ethyl ester methyl iodide salt (7a) was hydrolyzed by treatment with NaOH in aquous EtOH solution to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid mono methyl ester (2b) in 88% yield. By the same procedure, 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridinine-3,5-dicarboxylic acid 3-mono isopropyl ester (2c), 2,6-dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-mono methyl ester (2d), 2,6-dimethyl-4-(2',3'-dichlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-mono methyl ester (2e) and 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridin-3,5-dicarboxylic acid (2f) were obtained from the methyl iodide salts in 91-98% yield.

  • PDF

Synthesis of 4-(2, 4 dioxo-5-pyrimidyl)-1, 4-dihydropyridine Derivatives

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.310-313
    • /
    • 1990
  • Hantzsch synthesis of 5-formyluracil (1) methyl acetoacetate (2) and methyl 3-aminocrotonate (3) gave 2, 6-dimethyl-4-(2, 4-dioxo-5-pyrimidy)-1, 4-dihydropyridine-3, 5-dicarboxylic acid dimethylester (4a) in 54.6 yield. As the same procedure, 1, 3-dimethyl-5-formyl-uracil (6) gave 2, 6-dimethyl-4-(1, 3-dimethyl-2, 4-dioxo-5-pyrimidyl)-1, 4-dihydropyridine-3, 5-dicarboxylic acid dimethyl easter (7a) IN 52.2% yield. 4a was methylated to afford 7a also in 52% yield.

  • PDF

Synthesis of Methyl 2, 6-Dimethyl-5-(1', 2'-Dioxo-2'-Ethoxyethyl)-4-(3'-Nitrophenyl)-1, 4 Dihydropyridine -3-Carboxylate

  • Suh, Jung-Jin;Hong, You-Hwa
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.257-260
    • /
    • 1990
  • Hantzch's type reaction of methyl acetopyruvate (2a), methyl 3-aminocrotonate (3) and 3-nitrobenzaldehyde (4) led to dimethyl 3-acetyl-6-methyl-4-(3'-nitrophenyl)-2, 5-dicarboxylate (5a) and methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'-methoxyethyl)-4-(3' nitrophenyl)- 2, 5-dicarboxylate (5a) and methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'methoxyethyl_4-(3' nitrophenyl)1, 4-dihydropyridine-3-carboxylate (6a) in 26.7 and 9.2% yield, respectively. On the other hand, methyl 2, 60dimethyl-4-(3'-nitrophenyl)-1, 4-dihydropyridine 3-carboxylate (9) was acylated by ethyl oxaly chloride to give methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'-ethoxyethyl)-4-(3'-nitrophenyl)-a, 4-dihydropyridine-3-carboxylate (6b) in 76.8% yield.

  • PDF

Synthesis of 1, 4-dihydropyridine derivatives with vasodilating activities (l)

  • Suh, Jung-Jin;Lee, Bong-Yong;Kim, Chang-Seop;Lee, Jong-Wook;Kim, Byung-Chae;Han, Byung-Hee;Kim, Choong-Sup
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.240-245
    • /
    • 1990
  • Asymmetric 2, 6-dimethyl-4-aryl-1, 4-dihydropyridine-3, 5-dicarboxylate with [N-(3, 4-methylenedioxybenzyl)-N-methyl] aminoethyl group as the ester moiety and related 1, 4-dihydropyridine derivatives were prepared and tested for the effects on vascular smooth muscles. 2-6-dimethyl-4-(3'-nitrophenyl)1-4-dihydropyridine-3, 5-dicarboxylic acid 3-[N-(3', 4-methylenedioxybenzyl-N-methyl] aminoethyl ester 5-methyl ester (11) and 2, 6-dimethyl-4-(3'-nitrophenyl)-1, 4-dihydropyridine-3, 5-icarboxylic acid 3-[N-2', 3'-methylenedioxybenzyl)-N-methyl] aminoethyl ester 5-ethyl ester (150 showed potent vasodilating activities $IC_{50}$($10_{-8}M$) was 2, 6 and 2.7 for 11 and 15, compared with 3.5 for nicardipine.

  • PDF

Reduction of N-Arylpyridinium Compounds by Sodium Borohydride and Dithionite: Regioselectivity and Isomerization of Reduction Products

  • Koh, Park, Kwang-Hee;Han, Du-Hee;Shin, Dae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.201-204
    • /
    • 1986
  • Reduction of N-arylpyridinium compounds by $NaBH_4$ gave mixtures of the corresponding 1,2-dihydropyridine(major) and 1,4-dihydropyridine(minor), whereas similar reduction by $Na_2S_2O_4$ produced 1,4-dihydropyridines regioselectively. The proportion of 1,4-isomer in the product by $NaBH_4$ reduction appeared to increase with the electron-donating ability of N-aryl groups. When the N-aryl group is p-methylphenyl, p-ethylphenyl or p-methoxyphenyl, the 1,2-dihydropyridines in ethanol-water (4:1) solutions isomerized to the corresponding 1,4-dihydropyridines. N-(p-methylphenyl)-1,2-dihydropyridine and N-(p-ethylphenyl)-1,2-dihydropyridine in solid state also isomerized to the corresponding 1,4-dihydropyridines. The different behaviors of reduction among N-arylpyridiniums and isomerization of the reduction products depending on the substituent in N-aryl group were explained in terms of difference in the electronic effects of the substituents.