• Title/Summary/Keyword: 1,1'-Binaphthyl-2,2'-diamine

Search Result 4, Processing Time 0.015 seconds

Enantioseparation of Racemic 1,1'Binaphthyl-2,2'diamine by Preparative Liquid Chromatography

  • Ryoo, Jae-Jeong;Kwon, Woo-Jeong;Kim, Tae-Hyuk;Lee, Kwang-Pill;Choi, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1336-1340
    • /
    • 2004
  • The same kind of chiral stationary phase with a commercialized chiral column was used to make preparative chiral columns and was applied to resolve racemic N-acetyl-1-naphthylethylamide (3) by preparative liquid chromatography. An improved chromatographic condition to resolve racemic 3 on the CSP was examined by changing flow rate and kind of the mobile phase and the sample injection volume. The optimized separation conditions were applied to resolve racemic 1,1'-Binaphthyl-2,2'-diamine(4).

Preparation of New Binaphthol Derived Chiral Stationary Phases

  • Zhang, Yi Jun;Ryoo, Jae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2756-2760
    • /
    • 2011
  • To develop more advanced binaphthol derived CSPs, two new 1,1-bi-2-naphthol derived chiral stationary phases (CSPs) (CSP 1 and CSP 2) were prepared by connecting with silica gel at a hydroxy (OH) group of binaphthol. Previously reported two 1,1'-binaphthyl-2,2'-diamine derived CSPs (CSP 3 and CSP 4) were also prepared to compare the role of their functional groups (-OH and -$NH_2$) with CSP 1 and CSP 2. Enantioseparation of randomly selected, 11 chiral compounds on these four CSPs was performed and the results compared to each other. 3,5-Dinitrobenzoyl (3,5-DNB) derivatives of each CSP showed better results than the others and binaphthyldiamine derived CSP showed slightly better than binaphthol derived one.

Novel Silver(I) Ion Selective PVC Membrane Electrode Based on the Schiff Base (N2E,N2'E)-N2,N2'-Bis(Thiophen-2-ylmethylene)-1,1'-Binaphthyl-2,2'-Diamine

  • Jeong, Eunseon;Ahmed, Mohammad Shamsuddin;Jeong, Hae-Sang;Lee, Eun-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.800-804
    • /
    • 2011
  • A potentiometric sensor based on the Schiff base $(N^2E,N^{2'}E)-N^2,N^{2'}$-bis(thiophen-2-ylmethylene)-1,1'-binaphthl-2,2'-diamine has been synthesized and explored as an ionophore PVC-based membrane sensor selective for the silver ($Ag^+$) ion. Potentiometric investigations indicate a high affinity of this receptor for the silver ion. Seven membranes have been fabricated with different compositions, with the best performance shown by the membrane with an ionophore composition (w/w) of: 1.0 mg, PVC: 33.0 mg, DOA: 66.0 mg in 1.0 mL THF. The sensor worked well within a wide concentration range of $1.0{\times}10^{-2}$ to $1.0{\times}10^{-7}$ M, at pH 5, at room temperature (slope 57.4 mV/dec.), and with a rapid response time of 9 s; the sensor also showed good selectivity towards the silver ion over a huge number of interfering cations, with the highest selectivity coefficient for $Hg^{2+}$ at -3.7. Thus far, the best lower detection limit was $4.0{\times}10^{-8}$ M.