• Title/Summary/Keyword: .net

Search Result 13,567, Processing Time 0.047 seconds

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

The Respiratory and Hemodynamic Effects of Prone Position According to the Level of PEEP in a Dog Acute Lung Injury Model (잡종견 급성폐손상 모델에서 Prone position 시행시 PEEP 수준에 따른 호흡 및 혈류역학적 효과)

  • Lim, Chae-Man;Chin, Jae-Yong;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.140-152
    • /
    • 1998
  • Background: Prone position improves oxygenation in patients with ARDS probably by reducing shunt Reduction of shunt in prone position is thought to be effected by lowering of the critical opening pressure (COP) of the dorsal lung because the pleural pressure becomes less positive in prone position compared to supine position. It can then be assumed that prone position would bring about greater improvement in oxygenation when PEEP applied in supine position is just beneath COP than when PEEP is above COP. Hemodynamically, prone position is expected to attenuate the lifting of cardiac fossa induced by PEEP. Based on these backgrounds, we investigated whether the effect of prone position on oxygenation differs in magnitude according to the level of PEEP applied in supine position, and whether impaired cardiac output in supine position by PEEP can be restored in prone position. Methods: In seven mongrel dogs, $PaO_2/F_1O_2$(P/F) was measured in supine position and at prone position 30 min. Cardiac output (CO), stroke volume (SV), pulse rate (PR), and pulmonary artery occlusion pressure (PAOP) were measured in supine position, at prone position 5 min, and at prone position 30 min. After ARDS was established with warmed saline lavage(P/F ratio $134{\pm}72$ mm Hg), inflection point was measured by constant flow method($6.6{\pm}1.4cm$ $H_2O$), and the above variables were measured in supine and prone positions under the application of Low PEEP($5.0{\pm}1.2cm$ $H_2O$), and Optimal PEEP($9.0{\pm}1.2cm$ $H_2O$)(2 cm $H_2O$ below and above the inflection point, respectively) consecutively. Results : P/F ratio in supine position was $195{\pm}112$ mm Hg at Low PEEP and $466{\pm}63$ mm Hg at Optimal PEEP(p=0.003). Net increase of P/F ratio at prone position 30 min, however, was far greater at Low PEEP($205{\pm}90$ mm Hg) than at Optimal PEEP($33{\pm}33$ mm Hg)(p=0.009). Compared to CO in supine position at Optimal PEEP($2.4{\pm}0.5$ L/min), CO in prone improved to $3.4{\pm}0.6$ L/min at prone position 5 min (p=0.0180) and $3.6{\pm}0.7$ L/min at prone position 30 min (p=0.0180). Improvement in CO was attributable to the increase in SV: $14{\pm}2$ ml in supine position, $20{\pm}2$ ml at prone position 5 min (p=0.0180), and $21{\pm}2$ ml at prone position 30 min (p=0.0180), but not to change in PR or PAOP. When the dogs were turned to supine position again, MAP ($92{\pm}23$ mm Hg, p=0.009), CO ($2.4{\pm}0.5$ L/min, p=0.0277) and SV ($14{\pm}1$ ml, p=0.0277) were all decreased compared to prone position 30 min. Conclusion: Prone position in a dog with saline-lavaged acute lung injury appeared to augment the effect of relatively low PEEP on oxygenation, and also attenuate the adverse hemodynamic effect of relatively high PEEP. These findings suggest that a PEEP lower than Optimal PEEP can be adopted in prone position to achieve the goal of alveolar recruitment in ARDS avoiding the hemodynamic complications of a higher PEEP at the same time.

  • PDF

The Impact of Human Resource Innovativeness, Learning Orientation, and Their Interaction on Innovation Effect and Business Performance : Comparison of Small and Medium-Sized vs. Large-Sized Companies (인적자원의 혁신성, 학습지향성, 이들의 상호작용이 혁신효과 및 사업성과에 미치는 영향 : 중소기업과 대기업의 비교연구)

  • Yoh, Eunah
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.19-37
    • /
    • 2009
  • The purpose of this research is to explore differences between small and medium-sized companies and large-sized companies in the impact of human resource innovativeness(HRI), learning orientation(LO), and HRI-LO interaction on innovation effect and business performance. Although learning orientation has long been considered as a key factor influencing good performance of a business, little research was devoted to exploring the effect of HRI-LO interaction on innovation effect and business performance. In this study, it is investigated whether there is a synergy effect between innovative human workforce and learning orientation corporate culture, in addition to each by itself, to generate good business performance as well as a success of new innovations in the market. Research hypotheses were as follows, including H1) human resource innovativeness(HRI), learning orientation(LO), and interactions of HRI and LO(HRI-LO interaction) positively affect innovation effect, H2) there is a difference of the effect of HRI, LO, and HRI-LO interaction on innovation effect between large-sized and small-sized companies, H3) HRI, LO, HRI-LO interaction, innovation effect positively affect business performance, and H4) there is a difference of the effect of HRI, LO, HRI-LO interaction, and innovation effect on business performance between large-sized and small-sized companies. Data were obtained from 479 practitioners through a web survey since the web survey is an efficient method to collect a national data at a variety of fields. A single respondent from a company was allowed to participate in the study after checking whether they have more than 5-year work experiences in the company. To check whether a common source bias is existed in the sample, additional data from a convenient sample of 97 companies were gathered through the traditional survey method, and were used to confirm correlations between research variables of the original sample and the additional sample. Data were divided into two groups according to company size, such as 352 small and medium-sized companies with less than 300 employees and 127 large-sized companies with 300 or more employees. Data were analyzed through t-test and regression analyses. HRI which is the innovativeness of human resources in the company was measured with 9 items assessing the innovativenss of practitioners in staff, manager, and executive-level positions. LO is the company's effort to encourage employees' development, sharing, and utilizing of knowledge through consistent learning. LO was measured by 18 items assessing commitment to learning, vision sharing, and open-mindedness. Innovation effect which assesses a success of new products/services in the market, was measured with 3 items. Business performance was measured by respondents' evaluations on profitability, sales increase, market share, and general business performance, compared to other companies in the same field. All items were measured by using 6-point Likert scales. Means of multiple items measuring a construct were used as variables based on acceptable reliability and validity. To reduce multi-collinearity problems generated on the regression analysis of interaction terms, centered data were used for HRI, LO, and Innovation effect on regression analyses. In group comparison, large-sized companies were superior on annual sales, annual net profit, the number of new products/services in the last 3 years, the number of new processes advanced in the last 3 years, and the number of R&D personnel, compared to small and medium-sized companies. Also, large-sized companies indicated a higher level of HRI, LO, HRI-LO interaction, innovation effect and business performance than did small and medium-sized companies. The results indicate that large-sized companies tend to have more innovative human resources and invest more on learning orientation than did small-sized companies, therefore, large-sized companies tend to have more success of a new product/service in the market, generating better business performance. In order to test research hypotheses, a series of multiple-regression analysis was conducted. In the regression analysis examining the impact on innovation effect, important results were generated as : 1) HRI, LO, and HRI-LO affected innovation effect, and 2) company size indicated a moderating effect. Based on the result, the impact of HRI on innovation effect would be greater in small and medium-sized companies than in large-sized companies whereas the impact of LO on innovation effect would be greater in large-sized companies than in small and medium-sized companies. In other words, innovative workforce would be more important in making new products/services that would be successful in the market for small and medium-sized companies than for large-sized companies. Otherwise, learning orientation culture would be more effective in making successful products/services for large-sized companies than for small and medium-sized companies. Based on these results, research hypotheses 1 and 2 were supported. In the analysis of a regression examining the impact on business performance, important results were generated as : 1) innovation effect, LO, and HRI-LO affected business performance, 2) HRI by itself did not have a direct effect on business performance regardless of company size, and 3) company size indicated a moderating effect. Specifically, an effect of the HRI-LO interaction on business performance was stronger in large-sized companies than in small and medium-sized companies. It means that the synergy effect of innovative human resources and learning orientation culture tends to be stronger as company is larger. Referring to these result, research hypothesis 3 was partially supported whereas hypothesis 4 was supported. Based on research results, implications for companies were generated. Regardless of company size, companies need to develop the learning orientation corporate culture as well as human resources' innovativeness together in order to achieve successful development of innovative products and services as well as to improve sales and profits. However, the effectiveness of the HRI-LO interaction would be varied by company size. Specifically, the synergy effect of HRI-LO was stronger to make a success of new products/services in small and medium-sized companies than in large-sized companies. However, the synergy effect of HRI-LO was more effective to increase business performance of large-sized companies than that of small and medium-sized companies. In the case of small and medium-sized companies, business performance was achieved more through the success of new products/services than much directly affected by HRI-LO. The most meaningful result of this study is that the effect of HRI-LO interaction on innovation effect and business performance was confirmed. It was often ignored in the previous research. Also, it was found that the innovativeness of human workforce would not directly influence in generating good business performance, however, innovative human resources would indirectly affect making good business performance by contributing to achieving the development of new products/services that would be successful in the market. These findings would provide valuable managerial implications specifically in regard to the development of corporate culture and education program of small and medium-sized as well as large-sized companies in a variety of fields.

A Study on The 'Kao Zheng Pai'(考證派) of The Traditional Medicine of Japan (일본 '고증파(考證派)' 의학에 관한 연구)

  • Park, Hyun-Kuk;Kim, Ki-Wook
    • Journal of Korean Medical classics
    • /
    • v.20 no.4
    • /
    • pp.211-250
    • /
    • 2007
  • 1. The 'Kao Zheng Pai(考證派) comes from the 'Zhe Zhong Pai' and is a school that is influenced by the confucianism of the Qing dynasty. In Japan Inoue Kinga(井上金娥), Yoshida Koton(吉田篁墩) became central members, and the rise of the methodology of historical research(考證學) influenced the members of the 'Zhe Zhong Pai', and the trend of historical research changed from confucianism to medicine, making a school of medicine based on the study of texts and proving that the classics were right. 2. Based on the function of 'Nei Qu Li '(內驅力) the 'Kao Zheng Pai', in the spirit of 'use confucianism as the base', researched letters, meanings and historical origins. Because they were influenced by the methodology of historical research(考證學) of the Qing era, they valued the evidential research of classic texts, and there was even one branch that did only historical research, the 'Rue Xue Kao Zheng Pai'(儒學考證派). Also, the 'Yi Xue Kao Zheng Pai'(醫學考證派) appeared by the influence of Yoshida Kouton and Kariya Ekisai(狩谷掖齋). 3. In the 'Kao Zheng Pai(考證派)'s theories and views the 'Yi Xue Kao Zheng Pai' did not look at medical scriptures like the "Huang Di Nei Jing"("黃帝內經") and did not do research on 'medical' related areas like acupuncture, the meridian and medicinal herbs. Since they were doctors that used medicine, they naturally were based on 'formulas'(方劑) and since their thoughts were based on the historical ideologies, they valued the "Shang Han Ja Bing Lun" which was revered as the 'ancestor of all formulas'(衆方之祖). 4. The lives of the important doctors of the 'Kao Zheng Pai' Meguro Dotaku(目黑道琢) Yamada Seichin(山田正珍), Yamada Kyoko(山田業廣), Mori Ritsi(森立之) Kitamura Naohara(喜多村直寬) are as follows. 1) Meguro Dotaku(目黑道琢 1739${\sim}$1798) was born of lowly descent but, using his intelligence and knowledge, became a professor as a Shi Jing Yi(市井醫) and as a professor for 34 years at Ji Shou Guan mastered the "Huang Di Nei Jing" after giving over 300 lectures. Since his pupil, Isawara Ken taught the Lan Men Wu Zhe(蘭門五哲) and Shibue Chusai, Mori Ritsi(森立之), Okanishi Gentei(岡西玄亭), Kiyokawa Gendoh(淸川玄道) and Yamada Kyoko(山田業廣), Meguro Dotaku is considered the founder of the 'Yi Xue Kao Zheng Pai'. 2) The family of Yamada Seichin(山田正珍 1749${\sim}$1787) had been medical officials in the Makufu(幕府) and the many books that his ancestors had left were the base of his art. Seichin learned from Shan Ben Bei Shan(山本北山), a 'Zhe Zhong Pai' scholar, and put his efforts into learning, teaching and researching the "Shang Han Lun"("傷寒論"). Living in a time between 'Gu Fang Pai'(古方派) member Nakanishi Goretada(中西惟忠) and 'Kao Zheng Pai' member Taki Motohiro(多紀元簡), he wrote 11 books, 2 of which express his thoughts and research clearly, the "Shang Han Lun Ji Cheng"("傷寒論集成") and "Shang Han Kao"("傷寒考"). His comparison of the 'six meridians'(3 yin, 3 yang) between the "Shang Han Lun" and the "Su Wen Re Lun"("素問 熱論) and his acknowledgement of the need and rationality of the concept of Yin-Yang and Deficient-Replete distinguishes him from the other 'Gu Fang Pai'. Also, his dissertation of the need for the concept doesn't use the theories of latter schools but uses the theory of the "Shang Han Lun" itself. He even researched the historical parts, such as terms like 'Shen Nong Chang Bai Cao'(神農嘗百草) and 'Cheng Qi Tang'(承氣湯) 3) The ancestor of Yamada Kyoko(山田業廣) was a court physician, and learned confucianism from Kao Zheng Pai 's Ashikawa Genan(朝川善庵) and medicine from Isawa Ranken and Taki Motokata(多紀元堅), and the secret to smallpox from Ikeda Keisui(池田京水). He later became a lecturer at the Edo Yi Xue Guan(醫學館) and was invited as the director to the Ji Zhong(濟衆) hospital. He also became the first owner of the Wen Zhi She(溫知社), whose main purpose was the revival of kampo, and launched the monthly magazine Wen Zi Yi Tan(溫知醫談). He also diagnosed and prescribed for the prince Ming Gong(明宮). His works include the "Jing Fang Bian"("經方辨"), "Shang Han Lun Si Ci"("傷寒論釋司"), "Huang Zhao Zhu Jia Zhi Yan Ji Yao"("皇朝諸家治驗集要") and "Shang Han Ja Bing Lun Lei Juan"("傷寒雜病論類纂"). of these, the "Jing Fang Bian"("經方辨") states that the Shi Gao(石膏) used in the "Shang Han Lun" had three meanings-Fa Biao(發表), Qing Re(淸熱), Zi Yin(滋陰)-which were from 'symptoms', and first deducted the effects and then told of the reason. Another book, the "Jiu Zhe Tang Du Shu Ji"("九折堂讀書記") researched and translated the difficult parts of the "Shang Han Lun", "Jin Qui Yao Lue", "Qian Jin Fang"("千金方"), and "Wai Tai Mi Yao"("外臺秘要"). He usually analyzed the 'symptoms' of diseases but the composition, measurement, processing and application of medicine were all in the spectrum of 'analystic research' and 'researching analysis'. 4) The ancestors of Mori Rits(森立之 1807${\sim}$ 1885) were warriors but he became a doctor by the will of his mother, and he learned from Shibue Chosai(澁江抽齋) and Isawaran Ken and later became a pupil of Shou Gu Yi Zhai, a historical research scholar. He then became a lecturer of medical herbs at the Yi Xue Guan, and later participated in the proofreading of "Yi Xin Fang"("醫心方") and with Chosai compiled the "Jing Ji Fang Gu Zhi"("神農本草經"). He visited the Chinese scholar Yang Shou Jing(楊守敬) in 1881 and exchanged books and ideas. Of his works, there are the collections(輯複本) of "Shen Nong Ben Cao Jing"(神農本草經) and "You Xiang Yi Hwa"("遊相醫話") and the records, notes, poems, and diaries such as "Zhi Yuan Man Lu"("枳園漫錄") and "Zhi Yuan Sui Bi"("枳園隨筆") that were not published. His thoughts were that in restoring the "Shen Nong Ben Cao Jing", "the herb to the doctor is like the "Shuo Wen Jie Zi"("說文解字") to the scholar", and he tried to restore the ancient herbal text using knowledge of medicine and investigation(考據). Also with Chosai he compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志") using knowledge of ancient text. Ritzi left works on pure investigation, paid much attention to social problems, and through 12 years of poverty treated all people and animals in all branches of medicine, so he is called a 'half confucianist half doctor'(半儒半醫). 5) Kitamurana Ohira(喜多村直寬 1804${\sim}$1876) learned scriptures and ancient texts from confucian scholar Asaka Gonsai, and learned medicine from his father Huai Yaun(槐園). He became a teacher in the Yi Xue Guan in his middle ages, and to repay his country, he printed 266 volumes of "Yi Fang Lei Ju("醫方類聚") and 1000 volumes of "Tai Ping Yu Lan"("太平禦覽") and devoted it to his country to be spread. His works are about 40 volumes including "Jin Qui Yao Lue Shu Yi" and "Lao Yi Zhi Yan" but most of them are researches on the "Shang Han Za Bing Lun". In his "Shang Han Lun Shu Yi"("傷寒論疏義") he shows the concept of the six meridians through the Yin-Yang, Superficial or internal, cold or hot, deficient or replete state of diseases, but did not match the names with the six meridians of the meridian theory, and this has something in common with the research based on the confucianism of Song(宋儒). In clinical treatment he was positive toward old and new methods and also the experience of civilians, but was negative toward western medicine. 6) The ancestor of the Taki family Tanbano Yasuyori(丹波康賴 912-955) became a Yi Bo Shi(醫博士) by his medical skills and compiled the "Yi Xin Fang"("醫心方"). His first son Tanbano Shigeaki(丹波重明) inherited the Shi Yao Yuan(施藥院) and the third son Tanbano Masatada(丹波雅忠) inherited the Dian You Tou(典藥頭). Masatada's descendents succeeded him for 25 generations until the family name was changed to Jin Bao(金保) and five generations later it was changed again to Duo Ji(多紀). The research scholar Taki Motohiro was in the third generation after the last name was changed to Taki, and his family kept an important part in the line of medical officers in Japan. Taki Motohiro(多紀元簡 1755-1810) was a teacher in the Yi Xue Guan where his father was residing, and became the physician for the general Jia Qi(家齊). He had a short temper and was not good at getting on in the world, and went against the will of the king and was banished from Ao Yi Shi(奧醫師). His most famous works, the "Shang Han Lun Ji Yi" and "Jin Qui Yao Lue Ji Yi" are the work of 20 years of collecting the theories of many schools and discussing, and is one of the most famous books on the "Shang Han Lun" in Japan. "Yi Sheng" is a collection of essays on research. Also there are the "Su Wen Shi"("素問識"), "Ling Shu Shi"("靈樞識"), and the "Guan lu Fang Yao Bu"("觀聚方要補"). Taki Motohiro(多紀元簡)'s position was succeeded by his third son Yuan Yin(元胤 1789-1827), and his works include works of research such as "Nan Jing Shu Jeng"("難經疏證"), "Ti Ya"("體雅"), "Yao Ya"("藥雅"), "Ji Ya"("疾雅"), "Ming Yi Gong An"("名醫公案"), and "Yi Ji Kao"("醫籍考"). The "Yi Ji Kao" is 80 volumes in length and lists about 3000 books on medicine in China before the Qing Dao Guang(道光), and under each title are the origin, number of volumes, state of existence, and, if possible, the preface, Ba Yu(跋語) and biography of the author. The younger sibling of Yuan Yin(元胤 1789-1827), Yuan Jian(元堅 1795-1857) expounded ancient writings at the Yi Xue Guan only after he reached middle age, was chosen for the Ao Yi Shi(奧醫師) and later became a Fa Yan(法眼), Fa Yin(法印) and Yu Chi(樂匙). He left about 15 texts, including "Su Wen Shao Shi"("素間紹識"), "Yi Xin Fang"("醫心方"), published in school, "Za Bing Guang Yao"("雜病廣要"), "Shang Han Guang Yao"(傷寒廣要), and "Zhen Fu Yao Jue"("該腹要訣"). On the Taki family's founding and working of the Yi Xue Guan Yasuka Doumei(失數道明) said they were "the people who took the initiative in Edo era kampo medicine" and evaluated their deeds in the fields of 'research of ancient text', 'the founding of Ji Shou Guan and medical education', 'publication business', 'writing of medical text'. 5. The doctors of the 'Kao Zheng Pai ' based their operations on the Edo Yi Xue Guan, and made groups with people with similar ideas to them, making a relationship 'net'. For example the three families of Duo Ji(多紀), Tang Chuan(湯川) and Xi Duo Cun(喜多村) married and adopted with and from each other and made prefaces and epitaphs for each other. Thus, the Taki family, the state science of the Makufu, the tendency of thinking, one's own interests and glory, one's own knowledge, the need of the society all played a role in the development of kampo medicine in the 18th and 19th century.

  • PDF

A Study on The 'Kao Zheng Pai'(考證派) of The Traditional Medicine of Japan (일본 '고증파(考證派)' 의학에 관한 연구)

  • Park, Hyun-Kuk;Kim, Ki-Wook
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.10
    • /
    • pp.1-40
    • /
    • 2008
  • 1.The 'Kao Zheng Pai'(考證派) comes from the 'Zhe Zhong Pai(折衷派)' and is a school that is influenced by the confucianism of the Qing dynasty. In Japan Inoue Kinga(井上金峨), Yoshida Koton(古田篁墩 $1745{\sim}1798$) became central members, and the rise of the methodology of historical research(考證學) influenced the members of the 'Zhe Zhong Pai', and the trend of historical research changed from confucianism to medicine, making a school of medicine based on the study of texts and proving that the classics were right. 2. Based on the function of 'Nei Qu Li'(內驅力) the 'Kao Zheng Pai', in the spirit of 'use confucianism as the base', researched letters, meanings and historical origins. Because they were influenced by the methodology of historical research(考證學) of the Qing era, they valued the evidential research of classic texts, and there was even one branch that did only historical research, the 'Rue Xue Kao Zheng Pai'(儒學考證派). Also, the 'Yi Xue Kao Zheng Pai'(醫學考證派) appeared by the influence of Yoshida Kouton and Kariya Ekisai(狩谷掖齋). 3. In the 'Kao Zheng Pai(考證派)'s theories and views the 'Yi Xue Kao Zheng Pai' did not look at medical scriptures like the "Huang Di Nei Jing"("黃帝內經") and did not do research on 'medical' related areas like acupuncture, the meridian and medicinal herbs. Since they were doctors that used medicine, they naturally were based on 'formulas'(方劑) and since their thoughts were based on the historical ideologies, they valued the "Shang Han Ja Bing Lun" which was revered as the 'ancestor of all formulas'(衆方之祖). 4. The lives of the important doctors of the 'Kao Zheng Pai' Meguro Dotaku(目黑道琢) Yamada Seichin(山田正珍), Yamada Kyoko(山田業廣), Mori Ritsi(森立之) Kitamura Naohara(喜多村直寬) are as follows. 1) Meguro Dotaku(目黑道琢 $1739{\sim}1798$) was born of lowly descent but, using his intelligence and knowledge, became a professor as a Shi Jing Yi(市井醫) and as a professor for 34 years at Ji Shou Guan(躋壽館) mastered the "Huang Di Nei Jing" after giving over 300 lectures. Since his pupil, Isawara Ken(伊澤蘭軒) taught the Lan Men Wu Zhe(蘭門五哲) and Shibue Chusai(澀江抽齋), Mori Ritsi(森立之), Okanishi Gentei(岡西玄亭), Kiyokawa Gendoh(淸川玄道) and Yamada Kyoko(山田業廣), Meguro Dotaku is considered the founder of the 'Yi Xue Kao Zheng Pai'. 2) The family of Yamada Seichin(山田正珍 $1749{\sim}1787$) had been medical officials in the Makufu(幕府) and the many books that his ancestors had left were the base of his art. Seichin learned from Shan Ben Bei Shan(山本北山), a 'Zhe Zhong Pai' scholar, and put his efforts into learning, teaching and researching the "Shang Han Lun"("傷寒論"). Living in a time between 'Gu Fang Pai'(古方派) member Nakanishi Goretada(中西惟忠) and 'Kao Zheng Pai' member Taki Motohiro(多紀元簡), he wrote 11 books, 2 of which express his thoughts and research clearly, the "Shang Han Lun Ji Cheng"("傷寒論集成") and "Shang Han Kao"("傷寒考"). His comparison of the 'six meridians'(3 yin, 3 yang) between the "Shang Han Lun" and the "Su Wen Re Lun"("素問 熱論") and his acknowledgement of the need and rationality of the concept of Yin-Yang and Deficient-Replete distinguishes him from the other 'Gu Fang Pai'. Also, his dissertation of the need for the concept doesn't use the theories of latter schools but uses the theory of the "Shang Han Lun" itself. He even researched the historical parts, such as terms like 'Shen Nong Chang Bai Cao'(神農嘗百草) and 'Cheng Qi Tang'(承氣湯). 3) The ancestor of Yamada Kyoko(山田業廣) was a court physician, and learned confucianism from Kao Zheng Pai's Ashikawa Genan(朝川善庵) and medicine from Isawa Ranken(伊澤蘭軒) and Taki Motokata(多紀元堅), and the secret to smallpox from Ikeda Keisui(池田京水). He later became a lecturer at the Edo Yi Xue Guan(醫學館) and was invited as the director to the Ji Zhong(濟衆) hospital. He also became the first owner of the Wen Zhi She(溫知社), whose main purpose was the revival of kampo, and launched the monthly magazine Wen Zi Yi Tan(溫知醫談). He also diagnosed and prescribed for the prince Ming Gong(明宮). His works include the "Jing Fang Bian"("經方辨"), "Shang Han Lun Si Ci"("傷寒論釋詞"), "Huang Zhao Zhu Jia Zhi Yan Ji Yao"("皇朝諸家治驗集要") and "Shang Han Ja Bing Lun Lei Juan"("傷寒雜病論類纂"). of these, the "Jing Fang Bian"("經方辨") states that the Shi Gao(石膏) used in the "Shang Han Lun" had three meanings-Fa Biao(發表), Qing Re(淸熱), Zi Yin(滋陰)-which were from 'symptoms', and first deducted the effects and then told of the reason. Another book, the "Jiu Zhe Tang Du Shu Ji"("九折堂讀書記") researched and translated the difficult parts of the "Shang Han Lun", "Jin Qui Yao Lue"("金匱要略"), "Qian Jin Fang"("千金方"), and "Wai Tai Mi Yao"("外臺秘要"). He usually analyzed the 'symptoms' of diseases but the composition, measurement, processing and application of medicine were all in the spectrum of 'analystic research' and 'researching analysis'. 4) The ancestors of Mori Ritsi(森立之 $1807{\sim}1885$) were warriors but he became a doctor by the will of his mother, and he learned from Shibue Chosai(澁江抽齋) and Isawaran Ken(伊澤蘭軒) and later became a pupil of Shou Gu Yi Zhai(狩谷掖齋), a historical research scholar. He then became a lecturer of medical herbs at the Yi Xue Guan, and later participated in the proofreading of "Yi Xin Fang"("醫心方") and with Chosai compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志"). He visited the Chinese scholar Yang Shou Jing(楊守敬) in 1881 and exchanged books and ideas. Of his works, there are the collections(輯複本) of "Shen Nong Ben Cao Jing"("神農本草經") and "You Xiang Yi Hwa"("遊相醫話") and the records, notes, poems, and diaries such as "Zhi Yuan Man Lu"("枳園漫錄") and "Zhi Yuan Sui Bi"(枳園隨筆) that were not published. His thoughts were that in restoring the "Shen Nong Ben Cao Jing", "the herb to the doctor is like the "Shuo Wen Jie Zi"(說文解字) to the scholar", and he tried to restore the ancient herbal text using knowledge of medicine and investigation(考據), Also with Chosai he compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志") using knowledge of ancient text. Ritzi left works on pure investigation, paid much attention to social problems, and through 12 years of poverty treated all people and animals in all branches of medicine, so he is called a 'half confucianist half doctor'(半儒半醫). 5) Kitamurana Ohira(喜多村直寬, $1804{\sim}1876$) learned scriptures and ancient texts from confucian scholar Asaka Gonsai(安積艮齋), and learned medicine from his father Huai Yaun(槐園), He became a teacher in the Yi Xue Guan in his middle ages, and to repay his country, he printed 266 volumes of "Yi Fang Lei Ju"("醫方類聚") and 1000 volumes of "Tai Ping Yu Lan"("太平禦覽") and devoted it to his country to be spread. His works are about 40 volumes including "Jin Qui Yao Lue Shu Yi"("金匱要略疏義") and "Lao Yi Zhi Yan"(老醫巵言) but most of them are researches on the "Shang Han Za Bing Lun". In his "Shang Han Lun Shu Yi"("傷寒論疏義") he shows the concept of the six meridians through the Yin-Yang, Superficial or internal, cold or hot, deficient or replete state of diseases, but did not match the names with the six meridians of the meridian theory, and this has something in common with the research based on the confucianism of Song(宋儒). In clinical treatment he was positive toward old and new methods and also the experience of civilians, but was negative toward western medicine. 6) The ancestor of the Taki family Tanbano Yasuyori(丹波康賴 $912{\sim}955$) became a Yi Bo Shi(醫博士) by his medical skills and compiled the "Yi Xin Fang"("醫心方"). His first son Tanbano Shigeaki(丹波重明) inherited the Shi Yao Yuan(施藥院) and the third son Tanbano Masatada(丹波雅忠) inherited the Dian You Tou(典藥頭). Masatada's descendents succeeded him for 25 generations until the family name was changed to Jin Bao(金保) and five generations later it was changed again to Duo Ji(多紀). The research scholar Taki Motohiro was in the third generation after the last name was changed to Taki, and his family kept an important part in the line of medical officers in Japan. Taki Motohiro(多紀元簡 $1755{\sim}1810$) was a teacher in the Yi Xue Guan where his father was residing, and became the physician for the general Jia Qi(家齊). He had a short temper and was not good at getting on in the world, and went against the will of the king and was banished from Ao Yi Shi(奧醫師). His most famous works, the "Shang Han Lun Ji Yi"("傷寒論輯義") and "Jin Qui Yao Lue Ji Yi"("金匱要略輯義") are the work of 20 years of collecting the theories of many schools and discussing, and is one of the most famous books on the "Shang Han Lun" in Japan. "Yi Sheng"("醫勝") is a collection of essays on research. Also there are the "Su Wen Shi"(素問識), "Ling Shu Shi"("靈樞識"), and the "Guan Ju Fang Yao Bu"("觀聚方要補"). Taki Motohiro(多紀元簡)'s position was succeeded by his third son Yuan Yin(元胤 $1789{\sim}1827$), and his works include works of research such as "Nan Jing Shu Jeng"(難經疏證), "Ti Ya"("體雅"), "Yao Ya"("藥雅"), "Ji Ya"(疾雅), "Ming Yi Gong An"(名醫公案), and "Yi Ji Kao"(醫籍考). The "Yi Ji Kao" is 80 volumes in length and lists about 3000 books on medicine in China before the Qing Dao Guang(道光), and under each title are the origin, number of volumes, state of existence, and, if possible, the preface, Ba Yu(跋語) and biography of the author. The younger sibling of Yuan Yin(元胤 $1789{\sim}1827$), Yuan Jian(元堅 $1795{\sim}1857$) expounded ancient writings at the Yi Xue Guan only after he reached middle age, was chosen for the Ao Yi Shi(奧醫師) and later became a Fa Yan(法眼), Fa Yin(法印) and Yu Chi(禦匙). He left about 15 texts, including "Su Wen Shao Shi"("素問紹識"), "Yi Xin Fang"("醫心方"), published in school, "Za Bing Guang Yao"("雜病廣要"), "Shang Han Guang Yao"("傷寒廣要"), and "Zhen Fu Yao Jue"("診腹要訣"). On the Taki family's founding and working of the Yi Xue Guan Yasuka Doumei(矢數道明) said they were "the people who took the initiative in Edo era kampo medicine" and evaluated their deeds in the fields of 'research of ancient text', the founding of Ji Shou Guan(躋壽館) and medical education', 'publication business', 'writing of medical text'. 5. The doctors of the 'Kao Zheng Pai' based their operations on the Edo Yi Xue Guan, and made groups with people with similar ideas to them, making a relationship 'net'. For example the three families of Duo Ji(多紀), Tang Chuan(湯川) and Xi Duo Cun(喜多村) married and adopted with and from each other and made prefaces and epitaphs for each other. Thus, the Taki family, the state science of the Makufu, the tendency of thinking, one's own interests and glory, one's own knowledge, the need of the society all played a role in the development of kampo medicine in the 18th and 19th century.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF