• Title/Summary/Keyword: .RuO$_2$ electrode

Search Result 131, Processing Time 0.029 seconds

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

Microstructures and Electrical Properties of $RuO_2$Bottom Electrode for Ferroelectric Thin Films

  • Shin, Woong-Chul;Yang, Cheol-Hoon;Jun-SiK Hwang;Yoon, Soon-Gil
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.263-268
    • /
    • 1997
  • RuO$_3$ thin films were deposited on Si(100) substrate at low temperatures by hot-wall metalorganic chemical vapor deposition. Bis(cyclopentadienyl) ruthenium, Ru$(C_5H_5)_2$, was used as the precursor RuO$_2$single phase was obtained at a low deposition temperature of 25$0^{\circ}C$ and the crystallinity of RuO$_2$thin films improved with increasing deposition temperature. RuO$_2$thin films grow perpendicularly to the substrate and show the columnar structure. The grain size of RuO$_2$films drastically increases with increasing the deposition temperature. The resistivity of the 180 nm-thick RuO$_2$thin films deposited at 27$0^{\circ}C$ was 136 $\mu$$\Omega$-cm and increased with decreasing film thickness. SrBi$_2Ta_2O_4$ thin films deposited by rf magnetron sputtering on the RuO$_2$bottom electrodes showed a fatigue-free characteristics up to ~10$^10$ cycles under 5 V bipolar square pulses and the remanent polarization, 2 P$_r$ and the coercive field, 2 E, were 5.2$\mu$C/$\textrm{cm}^2$ and 76.0 kV/cm, respectively, for an applied voltage of 5 V The leakage current density was about 7.0$\times$10$^{-6}$ A/$\textrm{cm}^2$ at 150 kV/cm.

  • PDF

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite (다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성)

  • Lim, Hye-Min;Ryu, Kwang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

The characteristics of $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films deposited on $RuO_2$ bottom electrodes ($RuO_2$하부전극상에 증착된 $(Ba_{0.5}Sr_{0.5})TiO_3$박막의 특성)

  • 백수현;박치선;마재평
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.407-410
    • /
    • 1998
  • The characteristics of $(Ba,Sr)TiO_3$[BST] thin films with the variation of $O_2/Ar$ ratio in sputtering gas deposited on $RuO_2$ bottom electrode were investigated. Dielectric constant of BST film increases from 135 to 190 with increasing oxygen partial pressure from 10 to 50, which is mainly due to the improved crystallinity of BST film. The instability of $RuO_2$ surface in $BST/RuO_2$ interface and the increase in the surface roughness of BST thin films with higher $O_2/Ar$ ratio appeared to play an important roles on the degradation of the leakage current characteristics of $Al/BST/RuO_2$ capacitor with various $O_2/Ar$ ratio in sputtering gas. As a consequence, the leakage current of BST thin film showed the lowest value of $1.9{\times}10^{-7}\; A/{\textrm}{cm}^2$ at $O_2/Ar{\approx}1/9$.

  • PDF

Structural Investigations of $RuO_2$ and Pt ad Films fir the Applications of memory Devices

  • S. M. Jung;Park, Y. S.;D. G. Lim;Park, Y.;J. Yi
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.57-60
    • /
    • 1998
  • Lean zirconate titanate (PZT) is an attractive material for the memory device applications. We have investigated Pt and{{{{ { RuO}_{2 } }}}} as a botton electrode for a device application of PZT thin film. The bottom electrodes were prepared by using an RF magnetron sputtering method. The substrate temperature influenced the resistivity of Pt and {{{{ { RuO}_{2 } }}}} a s well as the film crystal structure. XRD examination shows that a preferred(111) orientations for the substrate temperature of 30$0^{\circ}C$. From the XRD and AFM results, we recommend the substrate temperature of 30$0^{\circ}C$ for the bottom electrode growth. We investigated and anneal temperature effect because Perovskite PZT structure is recommended for the memory device applications and the structural transformation is occurred only after and elevated heat treatment. As post anneal temperature was increased from RT to $700^{\circ}C$, the resistivity of Rt and {{{{ { RuO}_{2 } }}}} w as decreased. Surface morphology was observed by AFM as a function of post anneal temperature.

  • PDF

Electrocatalytic Performances of La0.6Ca0.4CoO3 and Pb2Ru2O6 prepared by Amorphous Citrate Precursor Method (Amorphous Citrate Precursor 법으로 제조한 La0.6Ca0.4CoO3와 Pb2Ru2O6의 전기화학적 촉매능)

  • Lee, Churl Kyoung;Sohn, Hun-Joon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The transition metal oxides have been of interest as bifunctional electrocatalysts for bifunctional air electrodes. The amorphous citrate precursor (ACP) process has been optimized to prepare perovskite (La0.6Ca0.4CoO3) and pyrochlore (Pb2Ru2O6) powders with high surface area, and consequent improvement of The electrocatalytic performance in an air electrode with thermal treatment. PTFE -bonded gas diffusion electrodes loaded with perovskitc and pyrochlore catalysts showed good bifunctional performances. The electrodes were fairly stable up to 100 hour in the galvanostatic mode at ${\pm}25mA/cm^2$, from which these electrodes offer promise as practical bifunctional air electrodes.

  • PDF

Effect of Water Quality of Cooling Tower on Legionella pneumophila Disinfection Using Ru/Ti Electrode (냉각탑수 수질이 Ru/Ti 전극을 이용한 Legionella pneumophila 소독에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.581-589
    • /
    • 2008
  • This study was carried out to evaluate the effect of water quality of cooling tower on Legionella pneumophila disinfection using Ru/Ti electrode. The influences of parameters such as pH, turbidity, $CaCO_3$ and TOC were investigated using laboratory scale batch reactor. Oxidants such as free Cl, $ClO_2,\;H_2O_2\;and\;O_3$ were measured. The results showed that all of the water quality parameters of cooling tower had deteriorated disinfection of Legionella pneumophila. When the turbidity, $CaCO_3$ and TOC was increased, oxidants which was generated during electrolysis was decreased. pH, free Cl, $ClO_2\;and\;H_2O_2$ concentration were decreased with the increase of pH, whereas $O_3$ concentration was increased with the increase of pH. The order of effect of water quality on the disinfection performance for Legionella pneumophila was turbidity > $CaCO_3$ > TOC > pH. To obtain the safety standard (1000 CFU/L), the simultaneous increase current and NaCl dosage was needed.

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites (Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가)

  • Lee, In-Ho;Kwen, Hai-Doo;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by $TiO_2$-hollow sphere prepared for use in sensor applications or fuel cells. The $TiO_2$-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the $Pt^{4+}$ and $Ru^{3+}$ ions onto $TiO_2$-hollow sphere ($Pt-Ru@TiO_2-H$). The prepared $Pt-Ru@TiO_2-H$ nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol, methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the $Pt-Ru@TiO_2-H$ nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto $TiO_2$-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

Potential Characteristics of Supercapacitor Based on Ruthenium Oxide-Aqueous Electrolyte (루테늄 산화물-수계 전해액 수퍼캐패시터의 전위 특성)

  • Doh, Chil-Hoon;Choi, Sang-Jin;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil;Lee, Ju-won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • The electrode for a supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloride hydrate$(RuO_2{\cdot}nH_2O)$. A supercapacitor was assembled with an electrode of ruthenium oxide material on a current collector of tantalum, and an electrolyte of 4.8 M sulfuric acid. The result of the AC impedance analyses on $Ta/H_2SO_4(4.8 M)/Pt$ cell showed that tantalum was stable at the potential range of $0.0\~1.1V(vs. SCE)$. Therefore, Ta film could be used the supercapacitor as a current collector. The irreversible hydrolysis in the supercapacitor occurred over ca. 1.0V(vs.SCE) when the supercapacitor was protonated to 0.5V(vs. SCE). The supercapacitor protonated to 0.5V(vs.SCE) showed good electrochemical properties when it was tested at the potential range of 1.0V in the charge-discharge test. The potential range of the electrodes including the positive and the negative electrode was varied between -0.004 and 0.995V(vs. SCE). The potential ranges of the positive and the negative electrode were $-0.004\~0.515V(vs.\;SCE)\;and\; 0.515\~0.995V(vs.\;SCE)$, respectively.

Quantitative Determination of $UO2^{2+}$ with Modified $[Ru(v-bpy)_3]^{2+}$ Polymer Film Electrode (수식된 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막전극을 이용한 U(VI)의 정량)

  • Cha, Seong-Keuck
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.17-23
    • /
    • 2000
  • Electrodes of the polycationic film with electropolymerized $[Ru(v-bpy)_3]^{2+}$ having about 1:1 ratio of $PF6^-/ClO_4^-$as the doped counter ions, were modified with xylenol orange and diethylditbiocarbamate by ion exchange which had stability constant as 38.6 and 17.5 respectively. These electrodes were employed in the quantitative multiple determination of U(W) in solution. The working electrode of electrochemical cell for the analytical signal was Pt/p-$[Ru(v-bpy)_3]^{2+}$, ligand, U(VI) with Ag/AgCl reference elecrode. In the stripping voltammetry. electrode process was electron transfer controlled one and calibration curves at the ranges of $1.0{\times}10^{-3}{\sim}1.0{\times}10^{-7}$ M had excellent relationship as 0.99 and relative standard deviation as 5${\sim}$8%.

  • PDF