• Title/Summary/Keyword: 힌지 접합

Search Result 69, Processing Time 0.028 seconds

Deformability of RC Beam-Column Assembles (철근콘크리트 보-기둥 접합부의 연성능력)

  • Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper proposes a method to predict the ductility capacity of reinforced concrete beam-column joints failing in shear after the formations of plastic hinges at both ends of the adjacent beams. The current design code divides joints into two categories: Type 1 for structures in non seismically hazard area and Type 2 in seismically hazard area. While there are many researches related to joint shear strength in Type 1, those in regard to joint ductility capacity of Type 2 are scarce. This paper classified the ductility capacity of beam-column joints into column, joint panel, and beam deformability. Since a brittle failure such as shear or bond failure in the columns must be avoided, column deformability was calculated by elastic analysis. The plastic hinges of the adjacent beams affect joint deformability. Therefore, the prediction of joint deformability was calculated with consideration to the degradation of the diagonally compressed concrete due to the strain penetration.

  • PDF

Strength of Reinforced Concrete Beam-Column Assembles Subjected to Seismic Loading (지진하중을 받는 철근콘크리트 접합부의 강도)

  • Lee, Jung-Yoon;Chai, Hyee-Dai
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.25-33
    • /
    • 2006
  • This paper provides a method to predict the ductile capacity of reinforced concrete beam-column joints that fail in shear after the plastic hinges occur at both ends of the adjacent beams. After the plastic hinges occur at both ends of the beams, the longitudinal axial strain at the center of the beam section in the plastic hinge region abruptly increases because the neutral axis continues to move upward toward the extreme compressive fiber and the residual strain of the longitudinal bars continues to increase with each cycle of inelastic loading. An increase in the axial strain of the beam section after flexural yielding widens the cracks in the beam-column joints, thus leading to an decrease of the shear strength of the beam-column joints. The proposed method takes into account shear strength deterioration in the beam-column joints. In order to verify the shear strength and the corresponding ductility of the proposed method, test results of 52 RC beam-column assembles were compared. Comparisons between the observed and calculated shear strengths and their corresponding ductilities of the tested assembles, showed reasonable agreement.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

Evaluation of Steel Pull-Out of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부 철근의 뽑힘 평가)

  • Woo, Jae-Hyun;Park, Jong-Wook;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.833-841
    • /
    • 2010
  • In this report, the test results of five reinforced concrete beam-column joint subjected to cyclic load are presented. The main purpose of the research is to investigate the influence of the steel pull-out of the beam-column joints to the shear and ductile capacity of the RC beam-column assembles. In addition, the influence of the amount of beam reinforcement to the joint shear and ductile capacity is evaluated. Test results indicate that the yield penetration of steel bar increases as the joint shear strength ratio, $V_{j1}/V_{jby}$ decreases. And the slippage of the steel bars are varied according to the region of the beam-column joints. The pull-out of the steel bars of five specimens was almost the same regardless of the joint shear strength ratio, $V_{j1}/V_{jby}$. Because it was affected by not only the yield penetration of steel bar but also the axial elongation in the plastic hinge.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

Enhancing Seismic Performance of Exterior R.C. Beam-Column Connections Using Headed Bars (헤디드 바를 사용한 외부 철근콘크리트 보-기둥 접합부의 내진성능 향상)

  • Shin, Hyun Oh;Yang, Jun Mo;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • The reinforced concrete beam-column connections are in lack of constructability and are likely to show anchorage failure because of the complex details of joint regions. Under seismic loads, a destruction of the column or the beam-column joint leads to collapse of the whole structures. For this reason, the safety of structures has to be guaranteed by following procedures which are based on the strong column-weak beam design concept: 1) failure of beam by generating plastic hinge in the beam maintained a certain distance from the surface of column, 2) failure of column or beam-column joint. In this study, headed bars were used as longitudinal reinforcements of beam and joint reinforcements in order to improve the strength and constructability of joint and to relocate plastic hinge. The finite element analyses (FEAs) were performed to the reinforced concrete beam-column joints utilizing headed bar reinforcements. To verify the availability of the analysis models, the FEAs for experimental tests performed by previous researchers were conducted and compared with the experimental results. Additional variables are also considered to confirm the excellence of headed bars. Analysis results indicate that the constructability of beam-column connections can be improved by using headed bars for the full anchorage of longitudinal reinforcements of beam under similar structural performance. In addition, the plastic hinge was relocated to the intended place by using headed bars as joint reinforcements. Under cyclic displacement loading, the energy dissipation capacity and ultimate stress were increased and the decrease in stiffness was minimized.

The Comparison of Frame with Rigid Connections and Semi-rugid Connections using the RPH-2DF (수정소성힌지해석을 이용한 강접합 골조와 반당접합 골조의 비교)

  • Son, Seong Yong;Lee, Sang Sup;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.535-545
    • /
    • 2001
  • A refined method of analysis which is called the Advanced Analysis has been introduced This method is to consider the intial member imperfection residual stress and second-order effects so as to estimate the overall behavior of steel frame accurately Based on the refined plastic hinge method that is more suitable and practical in design practice. the program RPH-2DF is coded using the log model which represents the moment-rotation relationship of connection. The validity of this program is examined by frame test data. Finally to investigate the difference between behaviors of rigid and semi-rigid frame. the 10-story frame analysis results designed by MIDAS-GEN v4.2.2 are compared with the results by RPH-2DF.

  • PDF