• Title/Summary/Keyword: 힌지 라인

Search Result 6, Processing Time 0.017 seconds

Design and Performance Test of 10,000 lbf-in Class Dual Redundant Hinge Line Electro-Mechanical Actuator System (10,000 lbf-in급 힌지라인 이중화 전기식 구동장치 설계 및 성능평가)

  • Jeong, Seuhg-Ho;Seol, Jin-Woon;Heo, Seok-Haeng;Lee, Byung-Ho;Cho, Young-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Electro-mechanical actuator system for aircraft has advantages in compactness and its lightweight, compared to the hydraulic actuator system. Hinge line actuator has low air resistance and is suitable for special purpose such as stealth. This paper describes design contents of 10,000 lbf-in class dual redundant hinge line electro-mechanical actuator system for performance test. The control structure was designed to minimize impact of torque fighting. A mathematical model is proposed to analyze and validate the performances of actuator by comparison with experiment results.

Optimization of Injection Process Conditions For Control of Weldline Positions on Flip Top Cap (Flip Top Cap의 웰드라인 위치조정을 위한 사출성형조건의 최적화)

  • Seo, Keum-Hee;Song, Byeong-Uk;Cho, Ji-Hyun;Seo, Tae-Il;Lee, Jeong-Won;Shin, Jang-Soon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.413-416
    • /
    • 2011
  • Flip top cap은 경량성, 가공성, 내식성 우수하여 최근에 생활 용기 뚜껑으로 많이 활용되고 있다. Flip top cap은 사출성형에 의해 제작 되며 사출성형 과정에서 힌지부분에 웰드라인(Weldline)이 형성되어 기계적 강도가 떨어지게 된다. Flip top cap은 생활용기에 사용되며 실제생활에서 많은 작동을 요구하기 때문에 힌지부분의 웰드라인은 제품불량에 큰 원인이 된다. 또한 Flip top cap은 생산성을 높이기 위해 멀티캐비티(Multi-cavity) 사출방식을 선호한다. 멀티캐비티 방식은 높은 사출압력을 요구하기 때문에 사출품의 불량과 사출기에 많은 부하가 예상된다. 본 연구에서는 게이트 위치를 조정함으로써 사출품 힌지부분에서 발생할 수 있는 웰드라인을 품질에 영향이 없는 곳으로 이동시키고 최적의 사출 압력을 찾기 위한 유동해석을 통해 최적의 사출조건을 도출함으로써 Flip top cap의 기계적 품질과 제품생산성 향상을 위한 연구가 수행되었다.

  • PDF

A Case Study on Explosive Demolition of Cylindrical Silo (원통형 사일로 발파해체 시공사례)

  • Park, Hoon;Jang, Seong-Ok;Park, Hyong-Ki;Kim, Nae-Hoi;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.52-63
    • /
    • 2008
  • Recently the demand of demolition for the unnecessary cylindrical silo structure is increasing due to deterioration and unsatisfactory functional conditions and the issue of demolition is becoming a major highlight. This case study introduced the explosive demolition of the cylindrical silo structure by felling method. The results of explosive demolition conducted on cylindrical silo structure using the felling method show, A silo had collapsed precisely according to estimated direction but in case of B silo there was a minor difference. The lower colunms and ring girder support was designed to the hinge line but in reality the lower colunms of the silo did not do its structural support role and only the ring girder support did its role successfully. As for the impact vibration, most of the measurements were within the estimated range.

Integrated Micro-Mechanical Switches for RF Applications

  • Park, Jae Y.;Kim, Geun H.;Chung, Ki W .;Jong U. Bu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.952-958
    • /
    • 2000
  • 다양한 구조위 트랜스미션 라인과 힌지들을 갖는 고주파용 마이크로머신드 용량성 스위치들이 새롭게 디자인되었고 전기도금 기술, 저온 공정기술, 그리고 건식 식각기술들을 이용하여 제작되었다. 특히, 집적화된 용량성 스위치들이 높은 스위칭 on/off ratio와 on 캐패시턴스를 갖도록 하기 위하여 고유전율을 갖는 SrTiO3라는 상유전체를 절연체로 사용하였다. 제작된 스위치들은 8V의 구동전압, 0.08dB의 삽입손실, 42dB의 높은 isolation, 600의 on/off ratio, 그리고 50pF의 on 캐패시턴스의 특성들을 갖는다.

  • PDF

A Performance Evaluation of Beam Finite Elements with Higher-order Derivatives' Continuity (고차미분 연속성을 가지는 유한요소 보 모델들에 대한 성능평가)

  • Lee, Gijun;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.335-341
    • /
    • 2017
  • In this paper, beam finite elements with higher-order derivatives' continuity are formulated and evaluated for various boundary conditions. All the beam elements are based on Euler-Bernoulli beam theory. These higher-order beam elements are often required to analyze structures by using newly developed higher-order beam theories and/or non-classical beam theories based on nonlocal elasticity. It is however rare to assess the performance of such elements in terms of boundary and loading conditions. To this end, two higher-order beam elements are formulated, in which $C^2$ and $C^3$ continuities of the deflection are enforced, respectively. Three different boundary conditions are then applied to solve beam structures, such as cantilever, simply-support and clamped-hinge conditions. In addition to conventional Euler-Bernoulli beam boundary conditions, the effect of higher-order boundary conditions is investigated. Depending on the boundary conditions, the oscillatory behavior of deflections is observed. Especially the geometric boundary conditions are problematic, which trigger unstable solutions when higher-order deflections are prescribed. It is expected that the results obtained herein serve as a guideline for higher-order derivatives' continuous finite elements.

Development of a Structural-Analysis Model for Blast-Resistant Design of Plant Facilities Subjected to Vapor-Cloud Explosion (증기운 폭발을 받는 플랜트 시설물의 내폭설계를 위한 구조 해석 모델 개발)

  • Bo-Young Choi;Seung-Hoon Lee;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.103-110
    • /
    • 2024
  • In this study, a nonlinear dynamic analysis of a frame and single member, which reflect the characteristics of a plant facility, is performed using the commercial MIDAS GEN program and the results are analyzed. The general structural members and material properties of the plant are considered. The Newmark average-acceleration numerical-analysis method is applied to a plastic hinge to study material nonlinearity. The blast load of a vapor-cloud explosion, a representative plant explosion, is calculated, and nonlinear dynamic analysis is conducted on a frame and single member. The observed dynamic behavior is organized according to the ratio of natural period to load duration, maximum displacement, ductility, and rotation angle. The conditions and range under which the frame functions as a single member are analyzed and derived. NSFF with a beam-column stiffness ratio of 0.5 and ductility of 2.0 or more can be simplified and analyzed as FFC, whereas NSPF with a beam-column stiffness ratio of 0.5 and ductility of 1.5 or more can be simplified and analyzed as FPC. The results of this study can serve as guidelines for the blast-resistant design of plant facilities.