• Title/Summary/Keyword: 힌지모델

Search Result 135, Processing Time 0.025 seconds

Full Strength Capacity Connection Design for Medium-Low Rise Braced Steel Structure (가새 골조를 가진 중·저층 건물 접합부의 전강도 설계)

  • Shin, Jeong-Cheol;Sun, Sung-Min;Chung, Young-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Due to the concept of "full-strength capacity connection," the pushover analysis method became an issue in designing steel connections. It is difficult to apply practically, however, because engineers are unfamiliar with such method. Moreover, there have been insufficient representative studies on them because most of the past pertinent studies were performed based on high-rise and/or virtual structures. As such, for this study, an actual(now in process) steel structure, a medium-low-rise industrial building, was selected. To perform pushover analysis, it was suggested that lateral load patterns be used in a simple and clear manner for three- and two-dimensional analysis models. A new hinge property was also suggested to prevent erroneous connection design results that can occur in the design process. The suggested load patterns showed almost the same results regardless of the model that was used, from which the obtained load patterns were different. This result implies the validity of the suggested load patterns. As for the suggested hinge property, the structural analysis yielded sound and reasonable results, which confirmed the validity of the proposed hinge property.

Proposal of a New Design Method of the Pile-Bent Structure Considering Plastic Hinge (단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.91-101
    • /
    • 2011
  • In this study, a new design method of Pile-Bent structure considering plastic hinge was proposed on the basis of the beam-column model. To obtain the detailed informations, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Base on this study, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio ($D_c/D_p$) and normalized lateral cracking load ratio ($F/F_{Dc=Dp}$). Moreover, through comparisons with field cases to find out in-depth limit in which minimum concrete-steel ratio could be applied, in-depth limits ($L_{As=0.4%}$) normalized by the pile length ($L_p$) proportionally decrease as the pile length ($L_p/D_p$)increases up to $L_p/D_p=17.5$, and beyond that in-depth limit converges to a constant value (${\simeq}0.3$).

Optimal Design of Stiffness of Torsion Spring Hinge Considering the Deployment Performance of Large Scale SAR Antenna (전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계)

  • Kim, Dong-Yeon;Lim, Jae Hyuk;Jang, Tae-Seong;Cha, Won Ho;Lee, So-Jeong;Oh, Hyun-Ung;Kim, Kyung-Won
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • This paper describes the stiffness optimization of the torsion spring hinge of the large SAR antenna considering the deployment performance. A large SAR antenna is folded in a launch environment and then unfolded when performing a mission in orbit. Under these conditions, it is very important to find the proper stiffness of the torsion spring hinge so that the antenna panels can be deployed with minimal impact in a given time. If the torsion spring stiffness is high, a large impact load at the time of full deployment damages the structure. If it is weak, it cannot guarantee full deployment due to the deployment resistance. A multi-body dynamics analysis model was developed to solve this problem using RecurDyn and the development performance were predicted in terms of: development time, latching force, and torque margin through deployment analysis. In order to find the optimum torsion spring stiffness, the deployment performance was approximated by the response surface method (RSM) and the optimal design was performed to derive the appropriate stiffness value of the rotating springs.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Correlation between Analysis and Experiment on Inelastic Behavior of Reinforced Concrete Frame (철근콘크리트 골조의 비탄성 거동에 관한 실험 및 해석의 상관성)

  • 이한선;김상대;박철용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.255-266
    • /
    • 1997
  • 본 논문의 목적은 내진상세를 가진 철근콘크리트 골조의 비탄성 거동 예측에서 현재 사용되고 있는 해석적 방법이 가지는 신뢰성을 검토하고 실험에서 실측할 수 없었던 내부 힘의 분포 및 변화과정을 관찰하는 것이다. 이를 위하여 이미 실험이 수행된 2경간 2층 내진상세 모멘트-저항 철근콘크리트 평면골조(1)를 대상으로 ICARC 2D 프로그램(3)을 사용하여비탄성해석을 수행하였다. 해석결과가 실험결과에 최대한 일치하도록 관련 모델 변수들을 조절하였다. 이러한 해석결과가 실험결과와 어느 정도 일치하는 지 비교하였으며, 해석결과 얻어진 내부 힘의 발전과정을 관찰한결과 다음과 같은 결론에 도달하였다. (1)전체 횡력-횡변위 관계는 실험결과에 매우 유사하게 해석결과를 얻을 수 있다. (2)구조물의 힘의 분포 및 재분재 과정에 관련하여 해석은 구체적인 정보를 제사하였으며 실험결과 나타난 균열 및 변형결과와 대체로 일치한 소성힌지 발생과 파괴메카니즘을 나타내어 그 유용성을 입증하고 있다. (3)해석결과가 대체로 실험결가아 일치하나 국부거동과 관련하여 일부분 실제거동과 상당한 차이를 나타내어, 보다 정확한 모델을 개발할 필요성을 느낀다.

Composite Beam Element for Nonlinear Seismic Analysis of Steel Frames (강재 골조의 비선형 지진해석을 위한 합성 보 요소)

  • Kim, Kee Dong;Ko, Man Gi;Yi, Gyu Sei;Hwang, Byoung Kuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.577-591
    • /
    • 2002
  • This study presented a composite beam element for modeling the inelastic behavior of the steel beam, which has composite slabs in steel moment frames that are subjected to earthquake ground motions. The effects of composite slabs on the seismic behavior of steel moment frames were investigated. The element can be considered as a single-component series hinge type model whose predicted analytical results were consistent with the experimental results. Likewise, the element showed a significantly better performance than the bare steel beam elements. The composite model can also predict more accurately the local deformation demands and overall response of structural systems under earthquake loading compared with the bare steel models. Therefore, composite stabs can significantly affect locally and globally predicted responses of steel moment frames.

Numerical Simulation and Verification of Morphing Composite Structure with Embedded SMA Wire Actuators (형상기억합금 선이 삽입된 가변 복합재 패널의 해석 및 실험)

  • Kong, Jung-Pyo;Jung, Beom-Seok;Li, Ningxue;Ahn, Sung-Hoon;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.343-346
    • /
    • 2010
  • 형상기억합금이 삽입된 복합체는 힌지나 추가적 작동기 없이 그 자체로서 지능 구조의 역할을 할 수 있어 많은 분야에서 활발히 연구되고 있다. 본 논문에서는 형상기억합금(Shape Memory Alloy) 선이 삽입된 $\cap$자형 복합재를 제안하고, 형상기억합금과 모재가 정해진 경우의 곡률 변화에 영향을 주는 주요 설계 변수를 복합재의 너비, 두께, 형상기억합금의 편심률을 설계변수로 가정하고 유한요소 해석과 패널 제작 및 실험을 통해 검증한다. 먼저 라고다스(Lagoudas)모델을 형상기억합금의 구성방정식으로 이용한 유한요소해석모델을 구성하여 수치해석을 수행하고, 11 종류의 형상기억합금 선이 삽입된 유리섬유강화복합재(Glass Fiber Reinforced Plastic) 패널을 제작하여 열하중에 따른 곡률변화를 관찰한다. 해석결과와 실험결과의 비교를 통해 해석모델의 타당성을 검증하며, 해석을 통해 각 설계 변수들의 곡률변화에 대한 영향을 파악한다.

  • PDF

Inelastic Behavior of Standard School Building according to Hysteresis Models (이력모델에 따른 표준학교건물의 비탄성거동 연구)

  • Je, Jeong-Hyun;Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.838-845
    • /
    • 2009
  • The inelastic response characteristics of the standard school buildings depending on selection of hysteresis models are reviewed. Three earthquake records of El-centre, Santa-Monica, Taft and three artificial earthquake records in accordance with Korea standard are used and the inelastic response characteristics such as story shear force, story drift ratio, story displacement, hinge distribution state are reviewed with various hysteresis models. As results, story shear force is increased by maximum 60% according to hysteresis model. And Story drift ratio is increased by maximum 42% according to hysteresis model. And The result with clough model shows the maximum hinge distribution state.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames I: Element Formulation (강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 I: 요소개발)

  • Hwang, Byoung-Kuk;Jeon, Seong-Min;Kim, Kee-Dong;Ko, Man-Gi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.27-35
    • /
    • 2007
  • This study presents a non -prismatic beam element for modeling the elastic and inelastic behavior of the steel beam, which has the post-Northridge connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatic members with reduced beam section (RES) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Verification and calibration of the model are presented in a companion paper.