• 제목/요약/키워드: 히스토그램 투영

검색결과 55건 처리시간 0.021초

실세계 영상에서 경계선과 영상 분할을 이용한 기울기 검출 및 보정 (Extracting the Slope and Compensating the Image Using Edges and Image Segmentation in Real World Image)

  • 백재경;서영건
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권5호
    • /
    • pp.441-448
    • /
    • 2016
  • 본 논문에서는 문자열과 배경이 혼합된 장면에서 영상을 분할하여 기울기를 추출하고 보정하는 방법을 제안한다. 제안된 방법은 모폴로지를 이용하여 전처리를 하고 캐니 연산자를 이용하여 경계선을 검출한다. 그리고 경계선이 검출된 영상을 분할하여 경계선이 포함되어 있지 않는 영역은 배제하고 경계선이 포함되어 있는 영역만을 이용하여 여러 방향의 기울기에 따른 투영 히스토그램을 생성한다. 이를 이용하여 각 영역의 최대 경계선 집중도를 갖는 기울기를 구하고 장면의 기울기를 보정한다. 문자열과 배경이 혼합된 장면의 기울기 검출에서 제안된 방법은 경계선이 없는 무의미한 부분을 배제하기 때문에 기존의 방법보다 0.7% 더 좋은 결과를 얻을 수 있었다.

압축영역에서의 대표프레임 추출 및 영역분할기반 비디오 검색 기법 (Key Frame Extraction and Region Segmentation-based Video Retrieval in Compressed Domain)

  • 강응관;김성주;송호근;최종수
    • 한국통신학회논문지
    • /
    • 제24권9B호
    • /
    • pp.1713-1720
    • /
    • 1999
  • 본 논문에서는 동영상 압축 부호화에 대한 표준안인 MPEG 기반의 압축 비디오 시퀀스로부터 DCT DC 계수를 추출하고, 이들로 구성된 DC 이미지로부터 AHIM (Accumulative Histogram Intersection Measure)을 이용하여 장면 전환 검출을 수행한 후 대표 프레임을 추출하는 방법을 제시한다. 또한, 추출된 대표 프레임을 두 단계를 거쳐 데이터베이스의 색인 정보로 저장한 후, 입력되는 질의 영상에 대해 사용자가 원하는 검색 결과를 제시하는 방법에 대해 제안한다. 즉 전처리 과정으로 추출된 대표 프레임에 대해 영역 분할을 한 후, 첫 번째 단계에서 수평 투영된 결과를 히스토그램 분포 특성으로 변환시켜 데이터베이스의 색인 정보로 저장한다. 두 번째 단계에서는 영상의 모멘트 특성을 거리함수 값으로 변환시킨다. 실험 결과 제안된 방법이 검색에 있어 우수한 성능을 갖추고 또한 상당한 양의 처리 시간과 메모리 공간을 줄일 수 있음을 확인하였다. 향후 제안한 방법은 색상과 같은 다른 색인 정보와 결합할 경우, 보다 나은 영상 색인과 검색 수단을 제공할 것이다.

  • PDF

이미지 검색을 위한 색상 성분 분석 (Color Component Analysis For Image Retrieval)

  • 최영관;최철;박장춘
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.403-410
    • /
    • 2004
  • 최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.

SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할 (Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering)

  • 정찬호;김경환
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.74-86
    • /
    • 2006
  • 본 논문에서는 계산 효율적이고 노이즈에 강건한 비디오 객체 분할 알고리즘을 제안한다. 움직임 분할과 색 분할을 효율적으로 결합한 시공간 분할 방법의 구현을 위해 SOM 기반의 계층적 군집 방법을 도입하여 특징 벡터들의 군집 관점에서 분할 과정을 해석함으로써 기존의 객체 분할 방법에서 정확한 분할 결과를 얻기 위해서 요구되어지는 많은 연산량과 노이즈에 의한 시스템의 성능 저하 문제를 최소화한다. 움직임 분할 과정에서는 움직임 추정 에러에 의한 영향을 최소화하기 위해서 MRF 기반의 MAP 추정 방법을 이용하여 계산한 움직임 벡터의 신뢰도를 이용한다. 또한 움직임 분할의 성능 향상을 위해서 움직임 신뢰도 히스토그램을 이용한 노이즈 제거 과정을 거칠 뿐만 아니라 자동으로 장면 내에 존재하는 객체의 수를 구하기 위해서 군집 유효성 지표를 이용한다. 객체 추적의 성능 향상을 위해 교차 투영 기법을 이용하며, 분할 결과의 시간적 일관성 유지를 위해 동적 메모리를 이용한다. 다양한 특성을 가지는 비디오 시퀀스들을 이용한 실험을 통해 제안하는 방법이 계산 효율적이고 노이즈에 강건하게 비디오 객체 분할을 수행함은 물론 기존의 구현 방법에 비해 정확한 분할 결과를 얻을 수 있음을 확인하였다.

실시간 응용을 위한 웨이블릿 변환 기반의 얼굴 검출 (Wavelet Transform-based Face Detection for Real-time Applications)

  • 송해진;고병철;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.829-842
    • /
    • 2003
  • 최근 화상 회의, 화상 전화, 모바일 환경에서의 화상 통신, 얼굴 인식을 이용한 보안 시스템 등의 상업화에 힘입어 비디오에서의 얼굴 검출 및 추적 기술은 눈부신 발전을 이룩하였다. 또한, 얼굴 요소 검출은 요소 그 자체뿐 아니라 정화한 얼굴 영역 검출을 위한 필수 단계로서 중요한 연구 주제가 되고 있다. 그러나 영상에 나타난 복잡한 배경과 카메라 조작 및 조명에 의한 색상 왜곡 그리고 다양한 조명 조건 둥은 얼굴 검출 및 추적, 요소 검출에 있어 여전히 큰 장애가 되고 있다. 이에 따라, 본 논문에서는 실시간 화상 통신을 위한 새로운 얼굴 영역 검출 및 추적 알고리즘과 검출된 얼굴 영역에서 효과적으로 눈 영역을 검출할 수 있는 알고리즘을 제안한다. 제안하는 얼굴 검출 알고리즘은 복잡한 배경과 다양한 조명 조건에 관계없이 얼굴을 검출하고 추적하기 위해 웨이블릿 변환된 세 종류의 부 영역을 이용하여 얼굴 형판을 생성하고 웨이블릿 변환된 입력 영상과의 유사도를 측정하여 얼굴을 검출한다. 특히 다양한 조명 조건을 극복하기 위해 최소-최대 정규화와 히스토그램 평활화를 혼합 적용하여 매우 밝거나, 매우 어두운 영상에서의 얼굴 오 검출 및 놓침을 줄일 수 있었으며 세 가지 크기의 얼굴 형판을 이용함으로써 입력 영상에 존재하는 다양한 크기의 얼굴도 검출할 수 있었다. 또한 효과적인 얼굴 추적 알고리즘을 통해 다음 프레임에서의 얼굴 위치를 예측하고 예측된 얼굴 위치를 중심으로 탐색 영역을 정해 형판 정합을 수행함으로써 얼굴 검출률을 높이면서 수행 시간도 단축시킬 수 있었다. 수직, 수평방향 투영을 이용한 합리적인 눈 검출 알고리즘은 어두운 조명이나 부정확한 얼굴 영역에서도 만족스러운 결과를 보여주었다.26$이었으며, 점차 감소, 다시 증가하여 담금 10일에는 $3.42{\sim}3.69$이었다. 시험구별로는 KKR이 가장 낮았다. 총산은 담금 1일에 $0.29{\sim}0.82%$였으며 담금 6일에 $1.75{\sim}2.53%$로 최고값을 나타내었으며 그 후 감소하여 담금 10일에는 $1.61{\sim}2.34%$였다. 시험구간에는 KKR, SKR이 비교적 높은 값을 나타내었다. 무기질 함량은 발효기간이 경과할수록 증하였고 Ca는 $2.95{\sim}36.76$, Cu는 $0.01{\sim}0.14$, Fe는 $0.71{\sim}3.23$, K는 $110.89{\sim}517.33$, Mg는 $34.78{\sim}122.40$, Mn은 $0.56{\sim}5.98$, Na는 $0.19{\sim}14.36$, Zn은 $0.90{\sim}5.71ppm$을 나타내었으며, 시험구별로 보면 WNR, BNR구가 Na만 제외한 다른 무기성분 함량이 가장 높았다.O to reduce I/O cost by reusing data already present in the memory of other nodes. Finally, chunking and on-line compression mechanisms are included in both models. We demonstrate that we can obtain significantly high-performance