본 논문에서는 영상의 블록 분류 특성에 적응적인 대표 컬러 히스토그램 (representative color histogram)과 방향성 패턴 히스토그램 (directional pattern histogram)을 이용한 새로운 내용 기반 영상 검색 방법 (content-based image retrieval)을 제안한다. 제안한 방법에서는 영상을 일정한 크기의 블록으로 나누고, 분할된 블록의 분류 특성에 따라 컬러와 패턴 특징 벡터를 추출한다. 먼저 분할된 블록을 채도 (saturation)에 따라 휘도 블록 또는 컬러 블록으로 분류한 후, 휘도 블록에 대해서는 블록 평균휘도 쌍의 히스토그램을 구하고, 컬러 블록에 대해서는 블록 평균 컬러 쌍 히스토그램을 구함으로써 블록 분류 특징에 따라 컬러 특징 벡터를 추출한다. 또한 블록 휘도 변화의 기울기 (gradient)를 계산하여 방향성 분류를 행한 후 히스토그램을 계산함으로써 블록 방향성 패턴 특징을 추출한다. 본 논문에서 제안한 영상 검색 방법의 성능을 평가하기 위해서 컴퓨터 모의실험을 행한 결과 제안한 방법이 기존의 방법들보다 정확도 (precision) 및 특징 벡터 차원 (feature vector dimension) 크기 등의 객관적인 측면에서 우수함을 확인하였다.
최근 정보통신기술의 발전과 함께 영상매체의 급속한 증가로 영상의 효율적인 관리와 검색의 필요성이 요구되면서 내용기반 영상검색이 핵심기술로 대두되고 있다. 내용기반 영상검색에서 영상의 특징을 표현하기 위해 색상 히스토그램을 많이 사용하고 있으나, 색상만을 고려하는 것은 많은 단점을 지니고 있으므로 본 논문에서는 먼저 순차영역분할(sequential clustering)기법을 도입하여 영역을 분할하며, 분할된 영역의 색상평균값과 영역의 중심점으로부터의 거리 히스토그램을 영상의 특징으로 구하여 이를 비교함으로써 색상과 공간정보를 함께 고려하는 방법을 제안한다. 제안된 방법의 특성의 수가 18개로 타 방법보다 매우 작은 저장공간을 가지면서도 동시에 검색효율이 8.5% 이상 개선되었다. Precision 대 Recall에서도 각 질의영상에서 대부분의 Recall 값에서 제안한 방법의 우수함이 확인되었으며, 시각적으로도 양호한 검색결과를 얻을 수 있었다.
본 논문에서는 새로운 HAC(Histogram Area Calculation)방법과 영상의 객체분할 방법을 소개한다. 히스토그램을 이용한 영상은 색상 공간의 특징 때문에 조명에 매우 민감하여 빛의 강도에 따라 유사성이 저하되는 경우가 있다. 또한 공간적 정보를 가지고 있지 않아, 전혀 다른 모양의 영상일지라도 칼라 분포가 같은 영상으로 볼 수 있다. 이 논문에서 제안한 방법은 히스토그램 영역을 임의의 영역으로 나눠, 영역들의 유사성을 매칭(matching) 시킨다. 2차 검색방법으로 원 영상에서의 색상 질감 정보가 동일한 영역을 군집화 하여, 영상 분할된 객체들을 이용하여 검색하는 방법이다. 실험 결과, 제안한 방법이 전통적인 히스토그램 방법보다 검색 성능이 효율적인 결과를 얻었다.
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimodal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을수 있으나, 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 포함되어 있으므로 스케치 특징점 유무를 판별하는 임계치의 결정에는 애매 모호함이 존재한다. 따라서 본 논문에서는 영상에 대해 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀값의 거리를 계산하여 밝기의 조정률을 구하여 최소 밝기값과 최대 밝기 값을 설정하고 삼각형의 소속 함수에 적용한다. 소속 함수에 적용된 소속도를 a-cut 을 적용하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 방법보다 제안된 퍼지 이진화 방법이 효율적인 것을 알 수 있었다.
최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$과 $LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$와 $LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.245-248
/
2001
본 논문은 히스토그램 백 프로젝션, 히스토그램 인터 섹션 그리고 XY-프로젝션을 이용하여 물체를 분할하고 정합하여 물체 추적 시스템에 적용하고자 한다. 물체 추적 시스템에서 실시간 처리를 위하여 물체정합 모델은 계산량이 적고, 물체의 변화에도 일관성이 있어야 한다. 본 논문에서 제안한 물체정합 모델은 이러한 물체 추적 시스템에 적합하다. 본 논문에서는 움직이는 카메라로부터 획득된 영상에서 물체를 정합하는 것을 보였으며, 물체를 큰 오차 없이 추적함을 보였다.
영상에서 밝기 분포가 특정한 범위에 밀집되어 있는 경우 영상에 포함된 특징을 구분하기가 어렵다. 이러한 문제를 해결하기 위해서 전역 히스토그램 평활화와 지역 히스토그램 평활화를 적용한다. 전역 히스토그램 평활화를 적용하는 경우 밝기 분포의 밀집 정도를 고려하지 않고 전체 히스토그램 정보를 사용하기 때문에 지나치게 밝아지거나 어두워질 수 있으며 부분적인 명암값을 개선시키는 것이 어렵다. 지역 히스토그램 평활화를 적용하는 경우 영상의 전체 밝기 분포를 고려하지 않고 지역적인 영상의 밝기 정보만을 사용하기 때문에 블록 간의 명암값의 차가 커져서 블록화 현상이 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 영상의 히스토그램의 영역에 가우시안 혼합 모델을 적용하여 모델링을 한 후, EM 알고리즘을 반복적으로 적용하여 각 영역의 범위를 결정한다. 그리고 분할된 영역별로 히스토그램 평활화를 적용하여 유사한 밝기값을 갖는 영역이 과도하게 평활화 되는 것을 방지하며 명암대비를 향상시킨다.
영상 품질 개선을 위해 사용되는 히스토그램 평활화 알고리즘은 하드웨어 회로로 구현되면 소프트웨어로 구현된 경우보다 작업 속도 면에서 성능이 훨씬 뛰어나다. FPGA를 이용한 히스토그램 평활화 회로 구현에 대부분의 최신 FPGA에 포함된 곱셈기 회로와 상당량의 SRAM을 이용하고, 파이프라인을 적용하면 히스토그램 평활화 회로의 전체적인 동작 성능을 높일 수 있다. 본 논문은 이와 같은 방법을 적용하여 8비트 심도를 갖는 흑백 영상에 대해 히스토그램 평활화 작업을 고속으로 수행 가능한 FPGA 구현 방법을 제안한다. 제안된 회로는 FIFO를 이용하여 한 개의 영상에 대한 평활화가 진행되는 동안 다음 영상에 대한 히스토그램 계산을 수행할 수 있다. FIFO를 이용한 일부 작업의 시간적 중첩과 내장된 곱셈기 회로 그리고 파이프라인 적용 효과로 회로의 전체적인 성능은 대략 매 클럭마다 한 개의 화소에 대해 히스토그램 평활화를 수행할 수 있다. 그리고 영상을 분할하여 히스토그램 평활화 작업의 일부를 병렬 처리하면 그 성능을 속도 면에서 거의 두 배로 향상할 수 있다.
본 논문에서는 계층적 은닉 마코프 모델을 이용한 히스토그램과 모우멘트 기반의 동영상 장면전환 검출 방법을 제안한다. 제안된 방법은 웨이블릿 변환된 영상의 저주파 부 밴드로부터 히스토그램을 추출하며, 고주파 부 밴드로부터는 방향성 모우멘트를 추출한다. 그리고 수동적으로 분할된 비디오로부터 추출한 히스토그램 차와 모우멘트 차를 관측값으로 사용하여 은닉 마코프 모델을 학습한다. 비디오 분할 과정은 두 단계로 구성되는데, 먼저 히스토그램 기반의 은닉 마코프 모델은 입력된 비디오에 대하여 셧, 컷, 그리고 점진적인 장면전환의 3개의 범주로 분할한다. 그리고 두 번째 단계에서는 모우멘트 기반의 은닉 마코프 모델을 사용하여 점진적인 장면 전환을 더 세밀하게 페이드와 디졸브로 분할한다. 실험결과 제안된 방법은 기존의 경계값 기반의 방법보다 더 효율적으로 동영상의 셧 경계를 분할하였음을 볼 수 있었다.
공간 질의에 대한 선택율 추정은 가장 효율적인 실행 계획을 찾는데 이용되는 매우 중요한 과정이다. 공간 도메인이 큰 경우, 기존 연구의 요약정보는 상대적으로 적은 정보로 선택율을 추정하기 때문에 좋은 선택율을 유지하기 어렵다. 따라서, 이 논문에서는 작은 저장공간에 공간요약정보를 압축하는 새로운 기법인 MW 히스토그램을 제안한다. 이 히스토그램은 MinSkew 분할 알고리즘과 웨이블릿 변환이 결합되어 적은 저장공간에서도 타당한 선택율과 압축효과를 얻을 수 있고, 동적 갱신에 대해 효율적으로 대처할 수 있는 구조를 가진다. 실험 결과를 통하여, 버켓 수가 0.3M/6인 MW 히스토그램이 5%-20% 질의에서 평균적으로 좋은 성능을 보이고 있어, MW 히스토그램이 적은 저장공간에서 더 좋은 선택율을 얻을 수 있음을 확인시켜주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.