• Title/Summary/Keyword: 희소성

Search Result 280, Processing Time 0.034 seconds

Development of Core Components of Projected Clustering for High-Dimensional Categorical Data (고차원 범주형 데이터를 위한 투영 군집화 기법의 핵심 요소 개발)

  • Kim Min-Ho;Ramakrishna R.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.181-183
    • /
    • 2006
  • 본 논문은 고차원의 범주형 데이터에 대한 군집화에 대해서 다룬다. 기존의 범주형 데이터 객체를 위한 유사성(상이성) 계측들의 기저에 깔려 있는 한계점은 수치형 데이터에서와 같은 순서화 (ordering)의 부재와 데이터의 고차원성과 희소성에 기인하는데, 이를 효과적으로 극복할 수 있는 기법이 투영 군집화이다. 본 논문에서는 고차원의 범주형 데이터를 효과적으로 처리할 수 있는 투영 군집화를 다루며 핵심 요소인 군집 차원의 정의와 군집 응집도를 제안한다.

  • PDF

A case study on urban regeneration based on up-cycling in and out of the country (국·내외 업사이클링(Up-cycling) 기반 도시재생 사업 사례 연구)

  • Lee, seo-yeong;Noh, hwang-woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.177-178
    • /
    • 2018
  • 업사이클링 산업은 관련 국내 시장의 규모가 해외 시장보다 현저히 느려 미약적인 성장을 거듭하였지만 2016년 기준 약 200억원까지 달하는 것으로 분석되어 관련 사업이 지속적으로 발전할 것으로 예상된다. 역사성을 지속시키되 창의성을 더한 희소성, 친환경 의식으로 감성적 '가치소비' 트렌트와 맞물리면서 업사이클링 산업은 확산될 것으로 기대된다. 이에 따라 업사이클링 시장 환경을 되살리고 새로운 부가가치를 창출하는 새로운 신 시장으로 다가오고 있다. 이러한 배경에서 본 연구는 국 내외 업사이클링을 기반으로 한 도시재생 사례를 분석하는 연구로서 이를 통해 공공 환경 디자인에 업사이클링이 적용될 수 있는 기초 연구로서 의의가 있다.

  • PDF

A Clustering using Two-Dimensional Projection in High-Dimensional Data (고차원 데이터에서 2차원 프로젝션을 이용한 클러스터링)

  • 장미희;이혜명;박영배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.16-18
    • /
    • 2001
  • 데이터마이닝 기법 중의 하나인 플러스터링은 대용량 데이터베이스에서 유사한 특징을 가진 객체들을 집단화하는데 사용되는 매우 유용한 분석방법이다. 그러나 대부분의 클러스터링 알고리즘들은 고차원 데이터에서는 성능이 급격히 저하된다. 이것은 고차원 데이터 집합이 상당한 양의 잡음을 포함하고 있기 때문이며 고차원 데이터 고유의 희소성에 기인한다. 이에 따라 고차원 데이터의 구조와 특성을 지원하는데 적합한 클러스터링 기법이 개발되고 있다. 본 논문에서는 고차원 클러스터링에서 잡음 데이터를 효과적으로 제거하기 위한 새로운 알고리즘을 제안하는데, 이 일고리즘은 고차원 데이터의 저차원으로의 변환에 기초한다. 저 차원으로 변환을 위해 2차원 프로젝션을 이용하며, 반복적으로 2차원 프로젝션을 적용하여 잡음을 단계적으로 최소화한다. 이와 같은 2차원 프로젝션은 잡음을 점차적으로 줄여줄 뿐 아니라, 데이터 분포에 대한 시각화 작업에도 용이하다.

  • PDF

Performance Evaluation of an Imputation Method based on Generative Adversarial Networks for Electric Medical Record (전자의무기록 데이터에서의 적대적 생성 알고리즘 기반 결측값 대치 알고리즘 성능분석)

  • Jo, Yong-Yeon;Jeong, Min-Yeong;Hwangbo, Yul
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.879-881
    • /
    • 2019
  • 전자의무기록 (EMR)과 같은 의료 현장에서 수집되는 대용량의 데이터는 임상 해석적으로 잠재가치가 크고 활용도가 다양하나 결측값이 많아 희소성이 크다는 한계점이 있어 분석이 어렵다. 특히 EMR의 정보수집과정에서 발생하는 결측값은 무작위적이고 임의적이어서 분석 정확도를 낮추고 예측 모델의 성능을 저하시키는 주된 요인으로 작용하기 때문에, 결측치 대체는 필수불가결하다. 최근 통상적으로 활용되어지던 통계기반 알고리즘기반의 결측치 대체 알고리즘보다는 딥러닝 기술을 활용한 알고리즘들이 새로이 등장하고 있다. 본 논문에서는 Generative Adversarial Network를 기반한 최신 결측값 대치 알고리즘인 Generative Adversarial Imputation Nets을 적용하여 EMR에서의 성능을 분석해보고자 하였다.

Weight-based Career Quotient Management Service According to the Population Change (모집단 변화에 따른 가중치 기반 경력지수 관리 서비스)

  • Lee, SeungHyun;Woo, DaSeul;Hong, SongYi;Lee, Keon Myung
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.161-163
    • /
    • 2015
  • 기업의 인재 선발 형태가 변화함에 따라 학생들의 경력관리 필요성이 대두되어 대학별로 독자적인 경력관리서비스를 구축해 활용되고 있다. 대부분의 서비스는 사용자 입력 데이터만을 이용해 추가적인 요소 없이 통계정보를 제공한다. 본 논문에서는 가중치 기반 경력지수 관리 서비스를 소개한다. 가중치를 기반으로 사용자의 경력정보에 대한 점수를 계산해 경력지수를 산출하고 이를 통해 사용자는 경력의 희소성, 신뢰성과 같은 모집단의 특성을 반영한 경력관리가 가능하다.

Detecting and classification ADRs using Named Entity Recognition on social media (개체명 인식을 이용한 소셜 미디어에서의 약물 부작용 표현 추출 및 분류)

  • Jeong, Hyeon-jeong;Kim, Hyon Hee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.443-446
    • /
    • 2021
  • 의약품에 대한 안전성 정보 수집과 관리는 온라인, 오프라인을 통해 약물 이상 사례를 보고받는 형태로 진행되고 있다. 하지만 소비자들의 자발적인 참여로 이루어지므로 실제 발생하는 약물 부작용보다 데이터가 현저히 적다는 단점이 존재한다. 본 논문에서는 약물 이상 데이터 희소성 문제를 해결 할 수 있도록 소셜 미디어에서 약물 부작용 표현을 찾을 수 있도록 하였다. 소셜 미디어의 경우에는 표준 약물 부작용 용어를 사용하기보다는 일반인들이 자연어로 표현한 경우가 많으므로 개체명 인식 기법을 이용해 부작용을 추출할 수 있는 모델을 개발하였다. 또한 추출된 부작용 표현을 표준용어로 분류할 수 있는 모델을 제시하였다. 실험 결과 제안한 두 가지 모델은 0.9 이상의 정확도를 얻을 수 있었으며, 일반 사용자들이 자연어로 표현한 약물 부작용 표현을 효과적으로 찾아내고 표준 부작용 용어로 매핑할 수 있음을 보여준다.

Consideration upon Importance of Metadata Extraction for a Hyper-Personalized Recommender System on Unsupervised Learning (비지도 학습 기반 초개인화 추천 서비스를 위한 메타데이터 추출의 중요성 고찰)

  • Paik, Juryon;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.19-22
    • /
    • 2022
  • 서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.

  • PDF

Design of Low-Power Sparse Data Processing Unit for Systolic Array (시스톨릭 어레이를 위한 저전력 희소 데이터 프로세싱 유닛 설계)

  • Park, Judong;Kong, Joonho
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.27-29
    • /
    • 2022
  • 최근 인공지능 애플리케이션이 많이 사용되고 이러한 애플리케이션에서 데이터 희소성이 높아지고 있어 이러한 희소 데이터를 효율적으로 처리하기 위한 하드웨어 구조들이 많이 소개되고 있다. 본 논문에서는 희소 데이터 처리 시 전력 소모량을 낮출 수 있는 새로운 하드웨어 구조를 제안한다. 일반적인 인공지능 하드웨어에서 많이 사용되는 시스톨릭 어레이 구조를 기반으로 하며, 제안된 저전력 PE 가 희소 데이터 처리시 희소하지 않은 데이터 처리 시보다 최대 2 배의 전력 소모량을 줄일 수 있는 것으로 나타났다.

Personalized Hybrid Outfit Recommendation Based on Image Dissimilarity (이미지 비유사도 기반의 개인화된 하이브리드 의류 추천 모델)

  • Jeong-Won Yang;Ji-Hye Baek;Hyon-Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.459-460
    • /
    • 2023
  • 기존의 추천시스템은 상품간 혹은 사용자 간의 유사도를 기반으로 작동한다. 하지만 이는 사용자가 유사한 상품 추천 속에 갇히게 되는 필터 버블의 문제와 추천시스템의 고질적인 문제인 데이터 희소성 문제를 피할 수 없게 된다. 따라서 본 연구에서는 사용자의 취향과 체형 정보를 반영하여 사용자의 평점을 예측하는 협업 필터링 기반 딥러닝 추천과 상품간 비유사성을 고려하여 사용자의 평점을 예측하는 내용 기반 추천을 혼합한 하이브리드 추천 모델을 구축하여 기존 추천시스템의 문제점을 해결하였다. 모델의 성능평가를 위해 인터넷 의류 쇼핑몰을 대상으로 유사한 이미지를 활용한 하이브리드 추천 모델과 NDCG 값을 비교하였고 유사도가 낮은 이미지를 활용한 모델이 더 우수한 성능을 보였다. 이는 다른 제품과는 달리 소비자가 의류를 구매할 경우 이미 구매한 상품과 유사한 상품보다는 유사하지 않은 상품을 구매할 가능성이 크다는 것을 보여준다.

Analysis of Sign Prediction Accuracy with Signed Graph Convolutional Network Methods in Sparse Networks (희소한 네트워크에서 부호가 있는 그래프 합성곱 네트워크 방법들의 부호 예측 정확도 분석)

  • Min-Jeong Kim;Yeon-Chang Lee;Sang-Wook Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.468-469
    • /
    • 2023
  • 실세계 네트워크 데이터에서 노드들 간의 관계는 종종 친구/적 혹은 지지/반대와 같이 대조적인 부호를 갖는다. 이러한 네트워크를 분석하기 위해, 부호가 있는 네트워크 임베딩 (signed network embedding, 이하 SNE) 문제에 대한 관심이 급증하고 있다. 특히, 최근 들어 그래프 합성곱 네트워크 기술을 기반으로 하는 SNE 방법들에 대한 연구가 활발히 수행되어 오고 있다. 본 논문에서는, 부호가 있는 네트워크의 희소성 정도가 기존 SNE 방법들의 성능에 어떻게 영향을 미치는 지에 대해 분석하고자 한다. 4 개의 실세계 데이터 집합들을 이용한 실험을 통해, 우리는 기존 방법들의 부호 예측 정확도가 희소한 네트워크들에서는 상당히 감소하는 것을 확인하였다.