• Title/Summary/Keyword: 흡착 여과

Search Result 201, Processing Time 0.026 seconds

Recovery of Pure Ni(II) Compound by Precipitation from Hydrochloric Acid Solution Containing Si(IV) (규소(IV)가 함유된 염산용액으로부터 침전법에 의한 고순도 니켈(II)화합물의 회수)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.36-42
    • /
    • 2021
  • Spent lithium-ion batteries are treated by reduction-smelting at high temperatures to recover valuable metals. Solvent extraction and precipitation of the HCl leaching solution of reduction-smelted metallic alloys resulted in a filtrate containing Ni(II) and a small amount of Si(IV). Adsorption and precipitation experiments were conducted to recover pure Ni(II) compounds from the filtrate. Si(IV) was selectively loaded onto polyacrylamide, but this method did not efficiently filter the solution due to an increase in viscosity. The addition of Na2CO3 as a precipitant to the filtrate led to the simultaneous precipitation of Ni(II) and Si(IV). However, it was possible to recover nickel oxalate with a purity higher than 99.99% by selectively precipitating Ni(II) with the addition of Na2C2O4 as a precipitant.

Analysis of Turbidity Reduction Efficiency according to the Configuration of Filter Media in Open-cut River Bed Infiltration Process : Lab Scale Experiment (개착식 하상여과에서 여재 구성에 따른 탁도 저감 효율 분석: Lab Scale 실험을 통한 접근)

  • Yang, Jeong-Seok;Kim, Il-Hwan;Lee, Jae-Beom;Jeong, Jae Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.515-515
    • /
    • 2017
  • 하천에서 취수원을 개발하는데 있어 지층의 구성으로 물리, 화학적 여과, 흡착 등을 통해 자연 정화되는 간접 취수 방식이 활발히 도입되고 있다. 양질의 취수원을 공급할 수 있는 간접 취수 방식은 수량 확보 측면에서의 불확실성과 유지관리상의 어려움 때문에 많은 시행착오가 발생된다. 이와 같은 단점을 개선하기 위해 하상을 개착하여 불균질한 대수층을 치환하고 스크린을 통해 간접 취수원을 개발하는 하상여과 방식이 도입되고 있다. 대수층을 치환하여 여재를 구성함에 있어 오염물질 및 탁도의 저감 효율을 극대화하기 위해 다양한 연구가 진행되고 있다. 본 연구에서는 개착식 하상여과에서 치환하는 여재의 구성에 따른 탁도의 저감 효율을 분석하기 위해 축소 모형실험으로 구성하였다. 각각의 여재의 구성에 대해서는 상수도 시설기준을 통해 축소된 입경의 매질로 구성하였다. 실험실 규모의 모형 수조($1500mm{\times}500mm{\times}1700mm$)를 구성하고 하부에는 내경 80mm이고 길이 1300mm인 기능성 스크린이 부착된 취수관을 설치하였다. 모형 수조에서 여재의 두께는 총 1000mm로 구성하였고, 각각의 층에 대해서는 250mm로 하여 4개의 층을 구성할 수 있도록 하였다. 치환하는 여재의 매질에는 자갈, 왕사, 중사, 화산석을 사용하였고, 각각의 입경은 5-10mm, 2-5mm, 1-2mm, 2-5mm이고, 탁도를 유발하는 물질로는 입경이 $20{\mu}m$인 황토를 사용하였다. 단일매질 구성을 통해 각각의 여재 종류에 따른 탁도 저감 효과에 대해서 분석하였고, 세 가지의 혼합매질 구성을 통해 치환층 여재의 배치에 따른 탁도 저감 효과를 분석하였고, 각각의 구성은 중사-왕사-자갈-화산석, 화산석-중사-왕사-자갈, 중사-왕사-화산석-자갈로 하였다. 주입수는 30-50NTU를 유지하였으며 유출수의 탁도를 통해 저감 효율을 분석하였다. 분석된 결과를 통해 개착식 하상여과 방식의 여재 구성에 대해서 탁도 저감에 효율을 극대화할 수 있을 것으로 보여진다.

  • PDF

중성자방사화분석을 이용한 사용후핵연료 중 요오드 정량

  • 김정석;박순달;이창헌;문종화;정용삼;김종구
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.432-432
    • /
    • 2005
  • 사용후핵연료시료 중에 함유된 요오드(I-127 및 129)를 정량하기 위하여 화학적 방법으로 분리 회수하고 중성자방사화분석법을 이용하였다. 사전실험으로 모의사용후핵연료를 이용하여 회수율을 측정하였다. 모의 및 실제사용후핵연료시료를 $90^{\circ}C$에서 8 M $HNO_3$ 용액으로 용해하고 용해 후 용해용액 중의 잔류 요오드, 응축 및 휘발된 요오드 각각을 정량하였다. 응축 요오드는 핵연료 용해 후 재증류하여 회수하였다. 잔류 및 응축 요오드는 시료의 산화상태를 조절한 후 용매추출로 요오드를 회수한 다음 이온교환 또는 침전법으로 방사화학적으로 분리한 후 중성자방사화분석(RNAA)으로 정량하였다. 제작한 이온교환분리관 및 여과키트에 요오드를 흡착 또는 침전시켜 분리한 다음 중성자조사를 위한 삽입체(Insert)로 이용하였다. 휘발 요오드는 제조한 흡착체(Ag-silica gel)를 담은 흡착관에 포집하고 홉착체를 구간별 균질시료로 만든 다음 비파괴중성자 방사화분석(INAA)으로 정량하였다. 침전 및 흡착 요오드의 화학적 특성을 EPMA(electron probe microanalysis) 분석으로 조사하였다. 요오드 정량결과를 다른 방법으로 비교분석하기 위하여 음이온교환수지상에서 요오드를 정제 및 회수하기 위한 용리거동을 조사하였다.

  • PDF

Preparation of Minimally Processed Mulberry (Morus spp.) Juices (최소가공기술을 이용한 오디 과실주스의 제조)

  • Kim, In-Sook;Lee, Jun-Young;Rhee, Soon-Jae;Youn, Kwang-Sup;Choi, Sang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.321-328
    • /
    • 2004
  • Raw mulberry (Morus spp.) juice was prepared by minimal processing using several filter aids, fining agents, and clarifying enzymes, followed by filtration, centrifugation, and membrane filtration. Control of browning in minimally processed mulberry juices by anti-browning agents, sodium hydrosulfite, L-ascorbic acid, citric acid, and NaCl, was investigated using quantitative measurements of color changes during storage. Clarification of mulberry juice was improved by adding several filter aids, fining agents, and enzymes, followed by filtration and centrifugation. Several fining agents, including chitosan, chitin, PVPP, gelatin, and casein at a concentration of 1%, and combination of ultrafiltration and centrifugation at 8,000 rpm were not suitable for clarification of juice owing to strong adsorption of anthocyanin pigment. Combination of $0.01\;{\mu}m$ membrane filtration and centrifugation at 8,000 rpm was effective for clarification of mulberry juice. Browning of minimally processed mulberry juice was inhibited significantly by adding 200 ppm sodium hydrosulfite, and 0.1% L-ascorbic acid (L-AsA) and 0,1% citric acid (CA) also showed considerable browning inhibition. Combination of L-AsA and CA, which was moderately effective for browning inhibition of juice, may be useful as a sulfite alternative for mulberry juice. Optimum sugar ($^{\circ}Brix$)/acid ratio and commercial sterilization of minimally processed mulberry juice were approximately 40 and 10 min at $85-90^{\circ}C$, respectively.

A Study on the Adsorption of Sulfonamide Antibiotics on Activated Carbon Using Density Functional Theory (DFT 계산을 활용한 Sulfonamide계 항생물질의 활성탄 흡착에 관한 연구)

  • Jo, Jun-Ho;Lim, Dong-Hee;Seo, Gyu Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.457-463
    • /
    • 2013
  • The removal of sulfonamide antibiotics (SAs) by activated carbon was investigated by using granular activated carbon (GAC) tests and density functional theory (DFT) simulations. The GAC absorption tests show the removal efficiency of 68.4~90.7% and 99.0~99.9% in 1 and 24 hours, respectively. In both GAC tests, the removal efficiency of sulfamethazine (SMZ) was the highest followed by those of sulfathiazole (STZ) and sulfamethoxazole (SMTZ): SMZ > STZ > SMTZ. In DFT adsorption simulations, we found that the 4-aminobenzenesulfonamide parts of SMZ and STZ and the 3-methyl-1,2-oxazol-5-amine part of SMTZ are preferentially adsorbed on the edges of graphene model, provided that the adsorbates keep their structures without dissociation upon adsorption process. The adsorption energies of SMZ, STZ, and SMTZ are -4.91, -4.64, and -4.62 eV, respectively. This adsorption strength (SMZ > STZ > STMZ) agrees with the trend of the removal efficiency of SAs by GAC. In addition, dissociative adsorption configurations of SAs are discussed.

The Effects of Bark on Heavy Metal Adsorption I. The Effects of Pine and Oak Barks on Adsorption of $Fe^{++}$ and $Ni^{++}$ in Wastewater (수피(樹皮)에 의(依)한 중금속(重金屬) 흡착효과(吸着效果) I. 수피(樹皮)를 이용(利用)한 폐수(廢水)중 $Fe^{++}$$Ni^{++}$의 제거(除去) 효과(效果))

  • Kim, Kyung-Jig;Paik, Ki-Hyon
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 1986
  • The objective of this study was to investigate the physical and chemical factors of Pinus densiflora SIEB. et ZUCC. and Quercus mongolica Fisher barks affecting on the adsorption of heavy metals. The results obtained can be summarized as follows: 1. With decreasing the particle size of bark, the adsorption rate of two heavy metal ions were increased. In case of using same particle size, the adsorption of $Fe^{++}$, and $Ni^{++}$ by Quercus bark showed higher than by Pinus bark. 2. The effect of untreated bark on the adsorption of heavy metal was more or less 5% higher than that of HCHO-treated bark in both species. But the color absorbances of the filtrates from HCHO-treated Pinus and Quercus barks were 5.8 and 11.8 times smaller than those of the filtrate from untreated Pinus and Quercus barks, respectively. 3. The maximum adsorption of $Fe^{++}$, and $Ni^{++}$ by bark was shown after 30 min. of the reaction. 4. With increasing the concentration of heavy metal, the amount of adsorption by bark was increased, but the adsorption ratio were decreased. 5. The maximum adsorption of $Fe^{++}$, and $Ni^{++}$ appeared at final pH of $4{\sim}5$, and pH of $3.6{\sim}4.0$ in filtrate, respectively. 6. With increasing the bark weight per a given heavy metal solution, the adsorption ratio were increased, but the amount of adsorption per gram of bark was the highest on the reaction with 2g of bark in a economical sense showing the amount of adsorption of 21mg $Fe^{++}$/g and 7mg $Ni^{++}$/g of Pinus bark, 36mg $Fe^{++}$/g and 9mg $Ni^{++}$/g of Quercus bark, respectively.

  • PDF

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.201-211
    • /
    • 2011
  • The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.

Effect of Water-Thoroughly-Rinsing in the Artificially Metal-Contaminated Soil Preparation on Final Soil Metal Concentrations (인위적 중금속 오염 토양 제조과정에서 최종 세척과정이 중금속 토양 농도에 미치는 영향 연구)

  • Hur, Jeong-Hyun;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.670-676
    • /
    • 2011
  • Artificially metal-contaminated soils have been widely used for lab-scale soil washing and soil toxicity experiments. The artificial soil contamination methods consist of 1) first equilibrating soils with heavy metal solution, 2) filtrating or centrifuging soils from the mixture and 3) finally drying the soils. However, some of those artificially contaminated soil experiments have not clearly shown that the soils were thoroughly rinsed with water prior to conducting experiments. This study investigated the amount of heavy metal release from the artificially metal-contaminated soil by pre-water-rinsing. Three different artificially metal-contaminated soil preparation methods were first evaluated with Cd and Pb concentrations of soil. Then, this study investigated the effect of pre-water-rinsing on the Cd and Pb concentration of the artificially contaminated soil. Heavy metal concentrations of the soil produced by equilibrating and drying the metal solution-soil were significantly reduced by pre-water-rinsing. The results of the study implied that experimental results would be significantly distorted when the artificially heavy metal-contaminated soils were not thoroughly water-rinsed prior to conducting experiments. Therefore, the initial heavy metal concentration of the artificially contaminated soil should be determined after thoroughly rinsing the soil that was previously obtained through the adsorption and dry stages.

Advanced Swine Wastewater Treatment with using Membrane Bioreator(A/O) and Nanofiltration (MBR(Membrane Bioreactor: A/O)공정과 나노여과를 이용한 축산폐수 고도처리)

  • 장경국;배태현;김은영;장하원;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.115-118
    • /
    • 2004
  • 축산폐수에 대한 방류수 수질기준 항목에 COD의 추가 및 질소와 인의 기준이 강화(1999년)됨에 따라 많은 축산폐수처리시설의 보강과 새로운 기술도입이 요구되고 있다. 따라서 대부분의 공공처리시설에서는 질소 및 인을 제거하기 위하여 2차 처리단계에서 무산소조(탈질조)와 호기성(포기조)를 연계한 생물학적 질소제거를 실시하고, 최종처리단계에서 응집제 투입에 의한 응집ㆍ침전공정후 모래여과 또는 활성탄 흡착공정에 의한 인과 색도제거 하는 등, 생물학적 처리 및 물리ㆍ 화학적 처리시설이 추가적으로 보완ㆍ적용단계에 있다.(중략)

  • PDF