• Title/Summary/Keyword: 흡착 여과

Search Result 201, Processing Time 0.183 seconds

Characteristics of Degradation of Humic Acid in GAC Adsorption, Ozone Alone, and Ozone/GAC Hybrid Process (활성탄 흡착, 오존 단독, 그리고 오존/활성탄 혼합공정에서 부식산의 분해 특성)

  • Choi, Eun-Hye;Kim, Kei-Woul;Kim, Seog-Ku;Rhee, Dong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.989-994
    • /
    • 2005
  • The treatment efficiency and the degradation characteristics of humic acid were investigated in three processes-GAC adsorption, Ozone alone and Ozone/GAC hybrid process, in which $UV_{254}$, DOC, molecular size distribution and surface change of GAC were evaluated. DOC removal rate in Ozone/GAC hybrid profess(ca. 80%) was higher than the arithmetic sum of Ozone alone(38%) and GAC adsorption(19%). This result approves that the combined Ozone/GAC hybrid process brings synergistic effects on DOC removal from the HA containing water. $UV_{254}$ decrease rate was also at the highest in Ozone/GAC hybrid process from the three processes. It may be interpreted that the granular activated carbon in Ozone/GAC hybrid process acts as not only an adsorbent but also a catalyst for ozonation, and futhermore offers an additional reaction site between adsorbed organic matter and ozone. In the study of molecular sire distribution, there was no significant change of molecular size distribution in the GAC adsorption process during the reaction time of 120 min. In Ozone alone process, the fraction of molecular size over 30 kDa was decreased a little at the beginning and left constant after 10 min. But in Ozone/GAC hybrid process, the molecules size over 30 kDa of HA was significantly decreased from 36.3% to 3.9%. And also the fraction of smaller molecular size below 0.5 kDa was increased from 4.8%(untreated HA) to 12.3%(in Ozone alone) and 40.1%(in Ozone/GAC) respectively at the reaction time of 120 min.

Polydispersed Colloid Transport in Porous Media : An Experiment and Modeling (다공성 매질에서의 크기 분포를 갖는 콜로이드 이동 : 실험과 모델)

  • Park, Hee-Ju;Lee, Kon-Jae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • The mechanism of radionuclide colloid transport in porous media was studied through modeling and experiment. A nondestructive column scanning system was developed to improve the traditional destructive core slicing method. With an aid of this system we could get much more results from one experiment. Neutron activated clay soaked with soluble isotopes was used as colloid suspension. Filtration coefficients obtained through the experiments show two families of colloids despite their size distribution. New modeling of polydispersed colloid transport was made with two lumped parameters. This new model simulates well. Among the soluble isotopes $^{l37}$Cs mowed mainly as a form of colloid, but $^{85}$ Sr did not.t.

  • PDF

Dietary Fiber Contents and Physical Properties of Wild Vegetables (산채류의 식이섬유 함량과 물리적 특성)

  • 박종숙;이원종
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 1994
  • Nine wind vegetables were analyzed for moisture, ash, crude protein, crude lipid and dietary fiber. Wild vegetables contained 33-53% of dietary fiber on a dry weight basis. Dalle (Allium monanthum) contained 49% total dietary fiber and 22% soluble dietary fiber and dodok(Codonopsis lanceolata) contained 55% total dietary fiber and 21% soluble dietary fiber. Wild 8% more dietary fiber than cultivated one. Water holding capacities of wild vegetables were higher than commercial wheat bran and soy fiber, but lower in oil absorption. When wild dodok and dalle were wet milled by blade grinding before sieving the dietary fiber content in dodok was increased from 55 to 83 % with increasing the dietary fiber content in dalle form 49% to 69%.

  • PDF

Effect of Ozonation on Removal of Dissolved Organic Matter by Granular Activated Carbon Process (오존공정이 입상활성탄공정에서 용존유기물질의 제거에 미치는 영향)

  • Ahn, Hyo-Won;Chae, Seon-Ha;Wang, Chang-Keun;Lim, Jae-Lim
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.601-608
    • /
    • 2008
  • The objective of this study was to evaluate the effect of ozonation as pretreatment on the removal of dissolved or biodegradable organic matter(DOM or BOM), the variance of DOM fractionation, and microbial regrowth by pilot-scale granular activated carbon processes in which adsorption and biodegradability was proceeding due to long time operation. Regardless of point of ozonation applied, GAC processes with ozonation(i.e., Ozonation combined with GAC Filter-adsorber; Pre O$_3$ + F/A, Ozonation combined with GAC adsorber; Post O$_3$ + GAC) compared with GAC processes without ozonation(i.e., GAC Filter-adsorber; F/A, GAC adsorber; GAC) removed approximately 10 to 20% more of DOC, hydrophilic DOM(HPI), BDOC and AOC after long period of operation that biological activity was assumed to happen. Ozonation was not found to have a significant effect on the removal of DOC, but caused the decrease of AOC by approximately 20%. It was found that the fixed bacterial biomass on GAC media did not show a significant difference between the GAC with ozonation and GAC without ozonation as pre-treatment, whereas the HPC of column effluent was more biostable at Post O$_3$ + GAC compared with F/A or GAC.

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향)

  • Park, Jin-Yong;Lee, Gwon-Seop
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

Effect of Humic Substances on the Simultaneous Removal of Nitrate and Phosphate in a Micellar-Enhanced Ultrafiltration (MEUF) (미셀 한외여과(MEUF)를 이용한 질산성 질소와 인산의 동시제거 시 휴믹산의 영향)

  • 김보경;백기태;김호정;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.30-36
    • /
    • 2003
  • The effect of humic acid on the simultaneous removal of nitrate and phosphate was investigated in a micellar-enhanced ultrafiltration (MEUF). At the low molar ratio of cetylpyridinium chloride (CPC) to contaminants, the removal of nitrate was lower to 50% by 100 ppm of humic acid due to the competition for binding on micelles. At the molar ratio higher than 3, however, the removal of nitrate was over 80%. Phosphate was removed over 80% at the molar ratio higher than 1. The CPC and humic acid were rejected over 99 % by UF membrane. The flux did not decrease by 100 ppm of humic acid but rather slightly increased since the humic acid adsorbed on the membrane made the membrane more hydrophilic. As a result, humic acid did not diminish the performance of MEUF in the simultaneous removal of nitrate and phosphate.

A Theoretical Study on the Colloid-facilitated Radionuclide Transport with Decay Chain in the Fractured Rock (균열암반에서 방사성 붕괴사슬과 콜로이드를 동반한 방사성 핵종의 이동에 관한 이론적 연구)

  • 박진백;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.20-32
    • /
    • 2003
  • To understand the behavior of migration of contaminants in a fractured porous medium is a key to assure the overall safety of a potential radwaste repository. The feasible retention mechanism of contaminant transport in a tinctured medium are sorption of contaminants on solid surface and matrix diffusion of contaminants from a fracture into an adjacent porous medium. The acceleration mechanisms are the migration of contaminants in the form of pseudo-colloids and the limit of a volume f3r matrix diffusion. In this paper, the effects of these two acceleration mechanisms are studied mathematically, then semi-analytically computed by the application of the Talbot theorem and verified. Results indicate that the acceleration processes cannot be neglected in the modeling of contaminant transport in a fractured porous medium.

Effect of pH in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리 공정에서 pH의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.358-366
    • /
    • 2015
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. After that, spiral wound module was manufactured with it including a woven paper. Effect of pH was studied by comparing permeate fluxes and rejection rates of the spiral wound module using simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing at the end of filtration experiment. In addition, after the water filtrated by the spiral wound module was passed through a column filled with GAC (granular activated carbon), adsorption effect of GAC was investigated by measuring the turbidity and $UV_{254}$ absorbance.

A Review on Ceramic Based Membranes for Textile Wastewater Treatment (염색폐수의 처리를 위한 세라믹 분리막에 대한 고찰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 2022
  • Among various industries, the textile industry uses the largest amount of water for coloring textiles which leads to a large amount of wastewater containing various kinds of dye. There are various methods for the removal of dye such as flocculation, ozone treatment, adsorption, etc. But these processes are not much successful due to the issue of recycling which enhances the cost. Alternatively, the membrane separation process for the treatment of dye in wastewater is already documented as the best available technique. Polymeric membrane and ceramic membrane are two separate groups of separation membranes. Advantages of ceramic membranes include the ease of cleaning, long lifetime, good chemical and thermal resistance, and mechanical stability. Ceramic membranes can be prepared from various sources and natural materials like clay, zeolite, and fly ash are very cheap and easily available. In this review separation of wastewater is classified into mainly three groups: ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) process.