• Title/Summary/Keyword: 흡열연료

Search Result 39, Processing Time 0.029 seconds

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation (코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계)

  • Lee, Jongwon;Han, Myungwan;Kim, Beomsik
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.176-185
    • /
    • 2018
  • As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.

Evaluation on Adequate Range of Carbonization Temperature using Swine Manure through Reaction Kinetics (반응속도 분석을 통한 돈분의 탄화 온도 적정범위 평가)

  • Choi, Hyeong-Jin;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.25-32
    • /
    • 2017
  • Since the heating values of swine manures were very low at 859~1,075 kcal/kg, it was necessary to convert to carbonization residue by carbonization processes among thermal processes. The most important factor in the carbonization process of swine manure is the carbonization temperature, and it was evaluated the optimal range of carbonization temperature for swine manure in this study by the thermal characteristics and the reaction kinetics. The carbonization of swine manure could be described by the 1st order reaction and Arrhenius equation. The frequency factor (lnA) and the activation energy were estimated to be 3.05~13.08 and 6.94~18.05 kcal/mol, respectively. The range of optimal carbonization temperature range of swine manure was $260{\sim}300^{\circ}C$.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.

Numerical Analysis of Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics (CFD를 이용한 용융탄산염 연료전지 스택의 수치모사)

  • Lee, Kab-Soo;Cho, Hyun-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2005
  • In this paper, commercial CFD program FLUENT v5.3 is used for simulation of MCFC stack. Besides using conservation equations included in FLUENT by default, mass change, mole fraction change and heat added or removed due to electrochemical reactions and water gas shift reaction are considered by adding several equations using user defined function. The stacks calculated are 6 and 25 kW class coflow stack which are composed of 20 and 40 unit cells respectively. Simulation results showed that pressure drop took place in the direction of gas flow, and the pressure drop of cathode side is more larger than that of anode side. And the velocity of cathode gas decreased along with the gas flow direction, but the velocity of anode gas increased because of the mass and volume changes by the chemical reactions in each electrodes. Simulated temperature profile of the stack tended to increase along with the gas flow direction and it showed similar results with the experimental data. Water gas shift reaction was endothermic at the gas inlet side but it was exothermic at the outlet side of electrode respectively. Therefore water gas shift reaction played a role in increasing temperature difference between inlet and outlet side of stack. This results suggests that the simulation of large scale commercial stacks need to consider water gas shift reaction.

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.

Experimental Study on Autothermal Reformation of Methanol with Various Oxygen to Methanol Ratios for Fuel Cell Applications (연료전지용 메탄올 자열 개질기의 산소-메탄올 비율에 따른 성능 실험)

  • Hwang, Ha-Na;Shin, Gi-Soo;Jang, Sang-Hoon;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • The use of Hydrogen as a fuel is receiving considerable attention and as a result, research on novel methods of hydrogen production is necessary so that the hydrogen demands in the future can be satisfied. This study presents experimental data on methanol Autothermal Reformation that quantifies the relationship between the oxygen-to-methanol ratio ($O_2/CH_3OH$) and reformer efficiency. For each catalyst configuration, the $O_2/CH_3OH$ was varied from 0.1 to 0.4, with an increment of 0.05, to investigate the effects of $O_2/CH_3OH$ on the reactor performance, including temperature profile, conversion, and efficiency. $O_2/CH_3OH$ was increased from 0.15 to 0.20, and the catalyst bed temperature increased by $235^{\circ}C$ to approximately $550^{\circ}C$. The catalyst bed temperature increased with increasing $O_2/CH_3OH$ as the reaction shifted from endothermic to exothermic reaction and as a result, excess heat, which raised the reactor temperature, was generated. The reactor performance was shown to be highly dependent on $O_2/CH_3OH$. The optimum $O_2/CH_3OH$ = 0.30 found in the experimental tests is 30% higher than the theoretical optimum of 0.23. This is attributed to a combination of factors such as the concentrations of the $O_2$ and $CH_3OH$ gas, reaction rate, catalyst effects, heat loss from the reactor, and the difference between the actual amounts of reaction products formed and the theoretical amounts of the reaction products.

Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h (1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응)

  • Koo, Jeong-Boon;Sin, Jang-Sik;Yang, Jeong-Min;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.802-807
    • /
    • 2012
  • The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of $700^{\circ}C$ fed to the autothermal reactor. The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing $H_2O/CH_4$ ratio. Also the amount of $CO_2$ in the products increases with increasing $H_2O/CH_4$ ratio due to water gas shift reaction. The 97% of $CH_4$ conversion was obtained and the reactor temperature was maintained $600^{\circ}C$ at the condition of $GHSV=10,000\;h^{-1}$ and feed ratio ($H_2O/CH_4=0.6$ and $O_2/CH_4=0.5$). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is $0.94\;Nm^3/h$.

Synthesis and Characterization of Pyridinium Dinitramide Salt (피리디니움 디나이트라아마이드염의 합성과 특성연구)

  • Kim, Wooram;Kwon, Younja;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.397-401
    • /
    • 2016
  • A new solid oxidizer, pyridinium dinitramide (Py-DN) is a low toxic energetic material which can be utilized as a HPGP (high performance green propellant). In this work, Py-DN was synthesized using various starting materials including potassium sulfamate, pyridine hydrochloride, strong nitric acid and sulfuric acid. Physical and chemical properties of the Py-DN were characterized using UV-Vis, FT-IR and a thermal analyzer and their properties were compared to those of previously prepared salts including ammonium dinitramide[ADN, $NH_4N(NO_2)_2$] and guanidine dinitramide[GDN, $NH_2C(NH_2)NH_2N(NO_2)_2$] in our lab. Endothermic and exothermic decomposition temperatures of Py-DN were $77.4^{\circ}C$ and $144.7^{\circ}C$, respectively. The combustion caloric value was 1739 J/g, which is thermally more sensitive than that of conventional dinitramides. It may enable to lower the decomposition temperature, which can reduce preheating temperature required for satellite thruster applications.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.