• Title/Summary/Keyword: 흡수폴리머

Search Result 176, Processing Time 0.029 seconds

Degradation Behavior of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid) (Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 생분해 거동)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • The purpose of the study is to apply composites of poly (glycolic acid) (PGA) with [poly(R) 3-hydroxybutyrate] (P3HB) or poly (butylenes succinate- co-L-lactate) (PBSL) as medical resorbable composite materials with the complement of hydrolysis rate of each component. As a result, it was confirmed that the PBSL/PGA and P3HB/PGA composite fiber were hydrolyzed in phosphate buffer solution. Also, it has been revealed that the degradation of PBSL/PGA are accelerated due to PGA producing glycolic acid which can act as a catalyst. In addition, the hydrolysis of PBSL/PGA was found to be accelerated by the presence of lipase PS. When the PBSL/PGA composite fiber was placed in the air, not much hydrolysis has proceeded. Also, it was confirmed that the P3HB/PGA composite fiber maintained proper tensile strength in the air. Therefore, these complex fibers can be adapted to use as environmentally suitable, medically absorbable composite materials.

Anti-Reflection Coating Technology Based High Refractive Index Lens with Ultra-Violet Rays Blocking Function (반사방지 코팅기술 기반 자외선 차단 기능의 고굴절률 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.482-487
    • /
    • 2016
  • Ultra-violet rays are very harmful to eye health care. The blocking of ultra-violet rays and a reduction of optical reflection in the visible light range, which is to increase the share of transmitted light, and avoid the formation of ghost images in imaging, are important for the applications of polymer eyeglasses lenses. In this study, the high-refractive index polymer lenses, n=1.67, were fabricated by injection-molded method with the xylene diisocyanate monomer, 2,3-bis-1-propanethiol monomer, and benzotriazol UV absorber (SEESORB 709) mixture. To reduce the reflection of the polymer lens surfaces, multi-layer anti-reflection (AR) coatings were coated for both sides of the polymer lens using an E-beam evaporation system. The optical properties of the UV blocking polymer lens were characterized using a UV-visible spectrometer. The material properties of the thin films, which were composed AR coating layers, refractive index, and surface roughness, were analyzed by ellipsometry and atomic force microscopy. As a result, the fabricated polymer lens perfectly blocked ultra-violet rays below 395 nm with a blocking rate greater than 99%.

Effects of Absorbent Polymer on the Moisture Resistance and Hydration Characteristics of Cement Pastes (시멘트 페이스트의 특성에 미치는 흡수성폴리머의 영향)

  • 나종균;김창은;이승규
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.539-546
    • /
    • 1999
  • Absorbent polymer-cement composites were fabricated by the semi-powder mixing OPC(ordinary Portland cement) with an absorbent polymer. The effects of absorbent polymer on the mechanical properties and the hydration characteristics were observed and the polymer-cement interaction also discussed. Absorbent polymer-cement composites showed the value of total porosity of 8vol% the value of 28 days flexural strength was up to 280 Kgf/cm2 in the case of absorbent polymer-cement composite at 1 wt% absorbent polymer content and microstructure of absorbent polymer-cement composite has been observed more dense than that of OPC paste. Accordingly the permeability of compositewas improved and so the moisture resistance was also increased. Adding polymer did not retard the hydration of OPC. It was considered from the results of IR(infrared) analysis that the functional group of absorbent polymer would be changed from unidentate to bidentate during by the hydration of cement minerals.

  • PDF

계산화학적 방법을 이용한 Triphenylsulfonium 양이온의 해리 반응 기작 연구

  • Hwang, In-Seung;Kim, Jong-Beom;Kim, Jae-Uk;Hong, Gwang-U;Kim, U-Yeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.1-7
    • /
    • 2016
  • Triphenylsulfonium 양이온(TPS)은 잘 알려진 광산 생성자(photoacid generator, PAG)중 하나로 양이온성 중합반응(cationic polymerization)의 개시제로 널리 사용됐으며, 유기발광다이오드의 활성층, 폴리머 발광다이오드의 전자주입층을 구성하는 재료로도 사용되고 있다. TPS는 200nm 주변의 빛을 흡수하면 탄소-황 결합이 끊어져 페닐 라디칼과 diphenylsulfonium 양이온 라디칼로 분해되는 것이 알려져 있다. 본 연구에서는 밀도범함수이론과 시간의존 밀도범함수이론을 이용 triphenylsulfonium 이온의 광학적 특성을 조사하였다. 가장 안정한 구조를 기준으로 자외선 흡광 스펙트럼을 계산하였고, 실험값에 잘 맞는 것을 확인하였다. TPS의 빛에 의한 해리 과정을 알아보기 위해 페닐-황 결합 길이를 변화시키며 TPS의 흡광 스펙트럼을 계산, 여기상태 포텐셜 에너지 곡선을 구할 수 있었다. 결합의 분해에 이용되는 상태들은 주로 점유 분자 오비탈에서 최저준위 비점유 분자 오비탈(LUMO)로 들뜨는 성분을 가지고 있었는데, 이는 LUMO가 반결합성 오비탈이기 때문이다.

  • PDF

The Effect of Crosslinking on the Actuation of Electroactive IPMC Prepared with Fluoroalkyl Methacrylate/Acrylic Acid/HEMA Copolymer (Fluoroalkyl Methacrylate/Acrylic Acid/2-HEMA 공중합체로 제조한 IPMC의 구동 특성에 미치는 가교의 영향)

  • Jeong, Han-Mo;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.463-467
    • /
    • 2005
  • In order to enhance the actuation force of ionic polymer-metal composite (IPMC) made with the acrylic copolymer of fluoroalkyl methacryate, acrylic acie, and 2-hydroxyethyl methacrylate(HEMA), the hydroxy group of HEMA was corsslinked with 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane. The water uptake was reduced and the mechanical strengths and the actuation force of the membrane was improved by crosslinking. However, current and deformation responses of IPMC were decreased by crosslinking.

Optimization of the Water Absorption by Crosslinked Agar-g-Poly(acrylic acid) (Agar 그래프트 폴리아크릴산 겔의 흡수능 최적화)

  • Wuttisela, Karntarat;Panijpan, Bhinyo;Triampo, Wannapong;Triampo, Darapond
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.537-543
    • /
    • 2008
  • Crosslinked agar-g-poly(acrylic acid) (x-agar-g-PAA) super absorbent with a water absorbency ($Q_{H2O}$) of approximately 660 g/g was synthesized by the copolymerization of agar with an acrylic acid monomer. KPS and MBA were used as the initiator and crosslinker, respectively. Grafting was performed in air. Infrared spectroscopy was used to identify the product of copolymerization. The optimum conditions to synthesize the x-agar-g-PAA superabsorbent were 0.1 g of agar, 0.1 g of the KPS initiator, for 15 min; 50% AA monomer, 0.005 g of the MBA crosslinker, for a propagation time of 5 min; and 1 M NaOH for 15 min to allow for saponification. The reaction temperature was $80{^\circ}C$.

Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys (불소고분자내 유기용매의 비-픽 확산)

  • 이상화
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.24-34
    • /
    • 2004
  • Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

Self Healing System for Concrete Surface Crack using Polymer based Coating Agent Incorporating Microencapsulated Healing Agent (마이크로캡슐을 함유한 폴리머 코팅제의 콘크리트 표면균열 자기치유시스템)

  • Shin, Ki-Su;Ryu, Byung-Chul;Wang, Xiao-Yong;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.579-587
    • /
    • 2015
  • In this paper, microencapsulated healing agent was embedded in the polymer matrix to obtain self healing properties. Microencapsulation of methacrylate using polyurea-formaldehyde as a shell material and studied the effect of agitation rate on capsule characteristics such as size, shell thickness, and surface morphology. The formation of microcapsules was confirmed by FTIR and TGA, and capsule characteristics were studied by optical microscopy and SEM. The self-healing effect was evaluated using permeability measurements and further confirmed by surface analytical tools including optical microscope. According to the experimental results, the microencapsulated healing system has the self-heaing ability for artificial cracks.

Deposition of Micropattern using The Laser Direct Writing Method with a polymer coating layer (폴리머 코팅층 레이저 직접묘화법을 이용한 미세패턴증착)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6980-6985
    • /
    • 2014
  • A micro-conductive pattern was fabricated on an insulating substrate ($SiO_2$) surface using a laser direct writing method. In the LIFT process, when the laser beam irradiates a thin metal film, the photon energy is absorbed by the film and converted to thermal energy, and the thermal decomposition reaction produced by the resulting heat conduction forms a deposit on the substrate. The resistivity of the micro-electrodes deposited through LIFT process with and without polymer coating was measured. The results showed that the electric conductivity of the micro-pattern and micro-structure can be increased approximatly two times when the deposited micropattern is fabricated through a LIFT process with a polymer coating, compared to the case without a polymer coating.

Foaming Characteristics and Physical Properties of Ethylene Vinyl Acetate Copolymer Foams (Ethylene Vinyl Acetate Copolymer 발포체의 발포특성 및 물리적 특성)

  • Kim, Jin-Tae;Son, Woo-Jung;Ahn, Byung-Hyun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • Physical properties of foams depend on the density of foams, Physical properties of base polymers, open ceil contents, and cell structures including the size, size distribution, shape of ceil and the thickness of membrane and strut. The density of foam is affected by raw materials, concentration oi crosslinking agent and blowing agent and process parameters such as processing technique and condition. Ethylene vinyl acetate copolymer(EVA) foam is a crosslinked cellular material. The foaming characteristics and physical properties of EVA foam are affected by decomposition rate of blowing agent. In this study, the decomposition rate of blowing agent and crosslinking rate, foaming characteristics and physical properties of foams were evaluated. The slow decomposition rate of blowing agent results in low density foam, good shock absorption property and uniform cell size distribution compared to the high decomposition rate of blowing agent.

  • PDF