• Title/Summary/Keyword: 흡수제

Search Result 1,518, Processing Time 0.036 seconds

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Effect of Isopropanol on CO2 Absorption by Diethylenetriamine Aqueous Solutions (이소프로판올을 포함한 디에틸렌트리아민 상분리 흡수제의 CO2 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • A drawback in the CO2 capture process using an aqueous amine solution is the high energy requirement for the regeneration process. In order to overcome this disadvantage, this study investigated CO2 capture characteristics using a biphasic absorbent in which isopropanol (IPA) was introduced into an aqueous solution of diethylenetriamine (DETA). When the IPA composition exceeded 20 wt% in 20 wt% DETA aqueous solution, the absorbent phase was liquid-liquid separated into a CO2-rich phase and a CO2-lean phase because of the low solubility of the salt formed by the reaction of CO2 with DETA in isopropanol. When the isopropanol composition in the DETA aqueous solution increased, the phase volume ratio of the CO2-rich phase to the volume of the CO2-lean phase increased; and, accordingly, the CO2 in the CO2-rich phase was more concentrated. The results of absorbing CO2 in a packed tower using 20 wt% DETA + IPA + water absorbent confirmed that both the CO2 absorption capacity and the absorption rate were higher than that of the 20 wt% DETA aqueous solution. When a biphasic absorbent composed of DETA + IPA + water is applied to CO2 capture, it can be expected to concentrate CO2 because of phase separation and thereby reduce regeneration energy owing to volume reduction of the CO2-rich phase.

CO2 Absorption in Sodium Solution at High Pressure (고압에서의 나트륨계 흡수용액의 이산화탄소 흡수특성)

  • Oh, Myoung-Seog;Lee, Jin-Woo;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.602-606
    • /
    • 2009
  • The absorption capacity and initial absorption rate in 5 %, 10%, 15 % and 20% $Na_{2}CO_{3}$ under the constant temperature at $40^{\circ}C$ and the initial absorption rate in mixture of different alkaline salts such as $KHCO_3$, $CaCO_3$ and $K_{2}CO_{3}$ were measured using batch type stirred cell contractor. 10% $Na_{2}CO_{3}$ showed the highest absorption capacity and $Na_{2}CO_{3}$ and $K_{2}CO_{3}$ showed the somewhat increased absorption capacity and initial absorption rate respectively. Further more, we have studied the effect of adding Pz and Pp to $Na_{2}CO_{3}$. The result showed that absorption rate of $CO_2$ was increased by adding these additives.

Effect of Pressure on HCl Absorption Behaviors of a K-based Absorbent in the Fixed Bed Reactor (고정층 반응기에서 K-계열 흡수제의 압력에 따른 HCl 흡수 거동 연구)

  • Kim, Jae-Young;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Baek, Jeom-In;Park, Yeong Seong;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this study, the hydrogen chloride removal using K-based dry sorbents ($K_2CO_3/Al_2O_3$, KEPRI, Korea) was studied with varying the pressure in a fixed bed reactor (15 cm tall bed with 0.5 cm I.d.). Working temperature was $400^{\circ}C$ and feed gas concentration was 750 ppm (HCl vol%, $N_2$ balance). The chloride sorption capacity of sorbent increases with increasing pressure (1, 5, 10, 15 and 20 bar). Also, after forming KCl crystal by reaction with $K_2CO_3$ and HCl, owing to the strong bonding energy, sorbent regeneration was practically impossible. Its optical, physical and chemical characterizations were evaluated by SEM, EDAX, BET, TGA and XRD. At $400^{\circ}C$ and 20 bar condition, working condition for the dehalogenation process after gasification, K-based dry sorbent showed high HCl sorption capacity and HCl/$N_2$ separation performances comparing with Ca-based and Mg-based dry sorbents.

A Study on Reactivity of Zinc-Based Sorbents (아연계흡수제의 반응특성 규명연구)

  • 연장희;이영우;이창근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.24-34
    • /
    • 1998
  • In this research, effects of the types and amounts of binders and additives on desulfurization and regeneration reactivities of zinc titanate were investigated. Bentonite and kaolinite were used as binders and Mo-based, Ni-based, and Cu-based compounds were used as additives. A thermogravimetric analyzer (TGA) was utilized to investigate reactivities of desulfurization and regeneration for each sorbent. Two-cycle reactions of desulfurization-regeneration were performed in the TGA reactor. Results of XRD analysis showed that all sorbents had the crystalline phases of $Zn_2TiO_2$ and $Zn_2Ti_3O_8$ irrespective of the type and amount of binder and additive. Kaolinite-bound sorbents gave higher surface areas than bentonite-bound ones and the surface areas and pore volumes of sorbents increased with amount of binder increased. It was found that the most suitable temperatures for desulfurization and regeneration were 680$^{\circ}$C and 730$^{\circ}$C, respectively, and the sorbent prepared by the addition of 3 mol% CuO showed the best performance in terms of desulfurization and regeneration. Nio-added sorbents had good regenerability whereas $MoO_3-based$ sorbents showed poor performance. In cycle experiments in a fixed bed reactor 3 mol% CuO-added sorbents showed high reactivity.

  • PDF

Separation and Collection of Carbon Dioxide using Circulatory Hollow Fiber Membrane Contactor (순환식 중공사막 접촉기를 이용한 이산화탄소의 분리 및 기술)

  • 이용희;이용택;박유인;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.50-52
    • /
    • 1998
  • 1. 서론 : 오래전부터 기체를 액상에 분산시킴으로써 물질 전달 속도를 증가시킴과 동시에 기-액간의 접촉면적을 넓히려는 연구 즉, 기-액간의 접촉 경계면을 통하여 이루어지는 기체흡수에 관한 연구가 다각적으로 이루어져 왔다. 그러나, 기존의 흡수장치에서는 기-액간의 접촉면적을 정확히 계산할 수 없고, 기체에 의한 액체의 범람이나 편류현상등이 발생하여 액체나 기체의 유속에 제한을 주는 등 기술적인 문제점을 가지고 있다. 따라서 이러한 기존 흡수공정들의 문제점을 극복하기 위하여 최근에 제안된 것이 막을 이용하여 기체와 흡수제인 액체의 접촉을 인위적으로 제어할 수 있는 중공사막 접촉기이다. 본 연구에서는 수용성 흡수제가 흡수모듈과 탈착모듈을 순환하는 순환식 중공사막 접촉기를 이용하여 혼합기체(N$_2$/CO$_2$ = 80/20)로부터 이산화탄소를 선택적으로 분리.회수하고자 하였으며, 또한 흡수제의 농도, 유속변화, 그리고 진공식 탈착모듈에서 압력변화에 따른 기체투과 특성을 고찰함으로써 운전조건의 최적화와 그 응용 가능성을 제시하고자 하였다.

  • PDF

RADIOGRAPHIC STUDY OF ERUPTION CHARACTERISTICS FOR UPPER PERMANENT 1ST MOLAR CLASSIFIED AS IRREVERSIBLE ECTOPIC ERUPTION (비가역성 이소맹출로 분류된 상악 제1대구치의 맹출 특성에 관한 방사선학적 연구)

  • Im, El;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.556-562
    • /
    • 2009
  • Ectopic eruption of the maxillary first permanent molar means that the molar erupts out of the normal position and is arrested in its eruption by the second primary molar. This local eruption disturbance results in a premature atypical resorption on the distal part of the second primary molar. In most irreversible cases, the second primary molar is lost prematurely, either by spontaneous exfoliation or by extraction, In cases of doubt as to whether the eruption is of the irreversible type or not, careful radiographic observation period for a few months would be valuable in evaluating the possibilities of the tooth's freeing itself. The purpose of this study was to determine the characteristics and occurrence of the ectopic eruption of the maxillary first permanent molar. A descriptive, observational, retrospective study was done using the radiographs of 25 conseutive patients, who were in the first phase of mixed dentition. A method was designed to evaluate the amount of pathologic resorption of the second maxillary primary molar and the mesial angulation of the first permanent molar. The study showed that the most important etiologic factor was the eruption path or mesial angulation of the first permanent molars relative the chosen reference lines.

  • PDF

Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst (CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성)

  • Yoo, Kyung Seun;Kim, Sang Done
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2000
  • Reaction characteristics of simultaneous removal of SOx and NOx have been investigated in a thermogravimetric analyzer and tubular fixed bed reactor using the $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst. Sulfur removal capacity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is largely enhanced above both the temperature of $450^{\circ}C$ and the loading of 6wt% due to the participation of alumina support in a sulfation reaction. The NO reduction efficiency of 8wt% $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst shows the maximum value at $370^{\circ}C$ and then decreases with the increase of reaction temperature due to the oxidation of $NH_3$ gas. The presence of sulfate on the surface of sorbent/catalyst enhances the optimum reaction temperature showing the maximum deNOx efficiency. In the simultaneous removal of SOx and NOx at $250^{\circ}C$. deNOx activity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is rapidly decreased due to the formation of ammonium salts such as $NH_4HSO_4$. In the simultaneous removal reaction of SOx and NOx, the optimum temperature showing the maximum deNOx efficiency increases to $400^{\circ}C$ due to the presence of $SO_2$ gas.

  • PDF

Kinetics of the Reaction of Carbon Dioxide with AMP and Piperazine (AMP에 Piperazine을 첨가한 CO2 흡수 동역학)

  • Jang, Sang-Yong;Song, Ju-Seouk;Cho, Sang-Won;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.485-494
    • /
    • 2000
  • According to the worldwide interest in controlling $CO_2$ which contributes to green house effect. new techniques of reducing $CO_2$ are under development. We have developed new technique for reducing $CO_2$. In low $CO_2$ concentration. the chemical absorption method is useful. In this study. the kinetics of the reaction between $CO_2$ and the sterically hindered amine solution with piperazine. have been investigated from measurements of the rate of absorption of $CO_2$ in the stirred vessel that has a horizontal liquid-gas interface, in the temperature range $30{\sim}70^{\circ}C$. The experiments were carried out in the range 10.130~20.260 kPa of partial pressure of $CO_2$, and in aqueous $2.0kmol/m^3$ AMP solution with $0{\sim}0.4kmol/m^3$ piperazine The experimental results are as follows: 1) The absorption rate of $CO_2$ into aqueous AMP + piperazine solution is gett ng faster than that of aqueous AMP absorbents with temperature. Because the activation energy of piperazine 57.147 kJ/mol is higher than that of AMP 41.7kJ/mol. therefore the effect of piperazine on absorption rate increases with temperature. 2) Compared with aqueous AMP solution. the absorption rate of $CO_2$ into AMP + piperazine solution increases from 6.33% at $30^{\circ}C$ to 12% at $70^{\circ}C$, so AMP + piperazine solution is thought to be a better than AMP solution, 3) The reaction rate constants of piprazine in aqueous AMP solution with $CO_2$ have been determined as 217.21, 420.46, 707.00 and $3162.167m^3/kmol{\cdot}s$ respectively at 30, 40, 50 and $70^{\circ}C$ but these results are higher than those of Xu which were 186.7. 367.32. 693.01. $2207.65m^3/kmol{\cdot}s$ at 30, 40, 55, $70^{\circ}C$in aqueous MDEA solution. So the regression analysis of the data has led to the following equation In $k_p$ =28.324-6934.7/T.

  • PDF

Absorption characteristic of carbon dioxide in Ionic Liquids based sulfite anion in the pre-combustion condition (연소 전 조건에서 음이온이 Sulfite계인 이온성 액체의 CO2 흡수 특성)

  • Baek, Geun Ho;Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.763-769
    • /
    • 2021
  • In this study, ionic liquids were synthesized to remove carbon dioxide (CO2) on a laboratory scale. The vapor-liquid absorption equilibrium device (VLE) was used to investigate the carbon dioxide absorption capacity. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, showing excellent regeneration. Ethyl sulfite showed the highest absorption capacity of CO2 among the ionic liquids based on the sulfite anion. In particular, the absorption capacity of [beim] ethyl sulfite was 1.1 mol CO2 / mol IL at an absorption equilibrium pressure of 22 bar. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, from which regeneration is outstanding. After the absorption experiment, the viscosity of the sample tended to decrease by approximately 8% compared to that before the absorption experiment. On the other hand, the absorbent was synthesized in the first step. Moreover, the raw material used is also inexpensive and has excellent reproducibility and highly stable absorbent capacity.