• Title/Summary/Keyword: 흡수식 열펌프

Search Result 58, Processing Time 0.033 seconds

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Performance and Parameter Comparison between single stage and Two-Stage Compression/Absorption Heat Pump System (단단 및 2단 압축/흡수 히트펌스시스템의 성능 및 중요인자비교 분석)

  • Tian, Huaizhang;Park, Seong-Ryong
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.451-456
    • /
    • 2005
  • The mathematical model for the heat exchangers of absorber and desorber is made in the elementary control volume method and the thermodynamic properties of working fluid. water/ammonia mixture. are calculated by some fundamental subroutines in RefProp 7.0 and flash subroutines made by authors The simulation results show that two-stage cycle has higher COP than single stage if temperature lift is high: the performance of single stage compression cycle can be improved by increase of absorber pressure. but the performance of two-stage compression cycle can not be improved in this way : the compressor discharging temperature of two-stage compression is much lower than that of single stage cycle. which is very important to the safety operation of CA heat pump. Major parameter comparison between the cycles at their optimal configurations is also given.

  • PDF

A Study on the Energy Reduction of a Heating Network Through the Application of an Absorption Heat Pump (열원조건 분석 통한 흡수식 히트펌프 적용 열에너지 네트워크의 에너지 절감 예측)

  • Na, Sun-Ik;Lee, Young-Soo;Baik, Young-Jin;Lee, Gilbong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.239-248
    • /
    • 2017
  • At the $21^{st}$ Conference of the Parties (COP) of the United Nations Climate change Conference, representatives of the 195 member countries reached an agreement requiring all participating countries, including Korea, to establish proactive measures to fight climate change. Under this vision, energy network technologies are deemed as a key site of research towards meeting this goal. Herein, the headquarters of the Korea Institute of Energy Research (KIER) is a worthy site for carrying out energy network technology research insofar as it contains various heat sources. To prepare for this research, a study was conducted analyzing the heat sources at KIER based on measured data. The study also consisted of developeding simulation models to predict the amount of energy savings that could be derived by replacing an absorption chiller/heater with an absorption heat pump during winter seasons. In our simulation results, we observed a primary energy saving ratio of 65~72% based on the water temperature from the heat source of a coal power plant.

Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles (흡수압축 하이브리드 히트펌프 사이클의 성능특성)

  • Yoon J. I.;Kwon O. K.;Yang Y. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • This study describes the results of Coefficient of Performance(COP) analysis by cycle simulation for two types of absorption-compression hybrid cycle using the Water/Lithium Bromide solution pair. These types are basic hybrid systems introducing a mechanical compression process into the refrigerant vapor phase of the single effect absorption cycle. In absorption-compression hybrid cycles, coefficient of performance is improved compared with absorption cycle. Hybrid cycle Type 2 is considered as a key technology to support energy utilization system, given its capability of utilizing waste heat to drive system with a high level of efficiency.

  • PDF

A Study on the Performance of an Absorption Heat Transformer with Process Simulation (프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구)

  • Cho Seung Yon;Kim Young in
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.3
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiCl-$CaCl_2-Zn(NO_3)_2$ Solution at Solar Evaporator Heating (LiCl-$CaCl_2-Zn(NO_3)_2$ 수용액을 사용하는 흡수 2중효용 시스템에서 태양열을 증발기 열원으로 사용하는 난방기의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, with water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture which utilizes solar energy at the evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture than for the water-LiBr pair, and FR is lower for the former.

Analysis on the Domestic and Abroad Policies and Regulations for the Gas Cooling Systems (국내외 가스냉방 지원제도 비교분석)

  • Kim, Yong-Chan;Cho, Kum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.201-207
    • /
    • 2009
  • In this study, the domestic and abroad policies and regulations on the gas cooling systems have been analyzed. First, the current policies were investigated in Korea and other countries to stimulate the distribution of the gas cooling systems. The advantage and disadvantage for each policy were evaluated. Finally, several policies were proposed for the effective distribution of the gas cooling systems.

  • PDF

Simulation of the Second Kind LiBr - H2O Absorption Heat Pump (2종 LiBr - H2O 흡수식 열펌프의 시뮬레이션)

  • Huh, J.Y.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.146-161
    • /
    • 1989
  • The second kind LiBr-$H_2O$ absorption heat pump system was simulated and the performances of it were predicted. The elements of heat pump system, evaporator, absorber and generator were analysed by solving the energy balance equations and concentration equations which describe the reactions between working fluids. The results show that the temperature gain of absorber is affected considerably by the operating conditions of heat pump system, on the other hand, COP is little affected by them.

  • PDF

Thermal Design Analysis of an Absorption Heat Transformer for using Waste Hot Water (폐온수 이용 제 2 종 흡수식 열펌프의 열역학적 설계해석)

  • Kang, Byung-Ha;Kim, Young-In;Lee, Chun-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.4
    • /
    • pp.285-292
    • /
    • 1985
  • A computer program for thermal design analysis has been developed to predict the performance of an absorption heat transformer. The effects of temperature boost, cooling water temperature and effectiveness of components on the performance were investigated. Not only the detailed thermodynamic states such as temperatures, concentration of the solution, and mass flow rate at each point of the process but also the heat transfer rate in each component could be easily determined with given input parameters. The system's coefficient of performance (COP) was seen to increase with increased effectiveness of components, decreased temperature boost of hot water, and decreased cooling water temperature. Even though the COP increases with increased effectiveness of the components, the variation in the COP is not substantial above certain values of the effectiveness. A reference design point can be selected on this basis.

  • PDF