• Title/Summary/Keyword: 흑연의 최대크기

Search Result 9, Processing Time 0.024 seconds

Evaluation of Fatigue Strength in Ductile Cast Iron by Maximum and Mean Size of Graphite (최대 및 평균 구상흑연크기에 의한 구상흑연주철재의 피로강도의 평가)

  • Yoon, Myung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 2012
  • For different ferrite-pearlite matrix structure, contain more than 90% spheroidal ratio of graphite, GCD 45-3, GCD 50, GCD 60 series and 70%, 80%, 90% spheroidal ratio of graphite, GCD 40, GCD 45-1, GCD 45-2 series, this paper has carried out rotary bending fatigue test, estimated maximum and mean size of spheroidal graphite, investigated correlation. It was concluded as follows. (1) Fatigue limit in $10^7$cycles and numbers of spheroidal graphite per 1$mm^2$ was linear relation. (2) projection area of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of projection area of defects may be used as a guideline for the control of inclusion size in the steelmaking processes.

Quantitative Evaluation of Fatigue Strength by Spheroidal of Graphite in Ductile Cast Iron (구상화율에 의한 구상 흑연주철재의 피로강도의 정량적 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.36-41
    • /
    • 1999
  • Although the problems of defects and nonmetallic inclusion in metal fatigue are very complicated it is particularly important to view these problems from the perspective that defects and inclusions are virtually equivalent to small cracks. This concept will help us to understand various fatigue phenomena caused by graphite of Ductile cast iron. Therefore in this study different ferrite-pearlite matrix structure and pheroidal ratio of graphite of 70%, 80% and 90% GCD40 , GCD45-2 series have been carried out rotary bending fatigue test estimated the maxi-mum size of graphite investigated correlation. It was concluded as follows : (1) in ductile cast iron which have various spheroidal ratio of graphite the fatigue limit C series of 90% spheroidal ratio of graphite is the highest. While A series of 70% spheroidal ratio of graphite is the lowest (2) fatigue limit was predicted by vickers hardness(Hv) of matrix {{{{ SQRT {area } }}}} of maximum size graphite inputting Murakami and Endo's formula.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Catalytic Effects on Graphitized Carbon Fibers of Graphitization Catalysts Introduced during Hot-Water Stretching (열수 연신시 흑연화 촉매 도입에 따른 탄소섬유의 흑연화 촉진효과)

  • Hyun-Jae Cho;Hye Rin Lee;Byoung-Suhk, Kim;Yong-Sik, Chung
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.162-169
    • /
    • 2024
  • In this study, PAN(polyacrylonitrile)-based precursor fibers were produced through a wet-spinning process, and their morphologies and graphitization behavior were investigated in the presence of two graphitization catalysts (Ca, Ni). The graphitization catalysts were introduced into the formed pores during hot-water stretching of wet-spun PAN-based precursor fibers. The catalytic effects of graphitization catalysts were examined through crystal structure and Raman analysis. At a relatively low temperature of 1500℃, the graphitization was not significantly affected, whereas at a high temperature of 2400℃, the obtained ID/IG value of graphite fiber (GF-Ni100) was decreased by about twice (~0.28) compared to the untreated fibers (GF-AS~0.54). By comparing the ID/IG values (GF-Ca100~0.42: GF-Ni100~0.28) of Ca and Ni graphitization catalyst, it was found that the degree of graphitization of Ni graphitization catalyst showed higher influence than that of Ca graphitization catalyst. Moreover, 2D band was also observed, indicating that the graphite plane structures composed of multiple layers were developed. XRD results confirmed that the crystal inter-planar distance (d002) of the graphite crystal was slightly decreased after the treatment with the graphitization catalyst, But, the crystal size of Ca-treated graphite fiber (GF-Ca100) was increased by up to ~5 nm.

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

Evaluation of Statistical distribution of extreme values of Graphite in Ductile Cast Iron by Image Analyzer (구상흑연주철재의 화상해석에 의한 흑연의 극치통계 평가)

  • Yoon, Myung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 2010
  • Although the problems of defects and nonmetallic inclusion in metal fatigue are very complicated, it is particularly important to view these problems from the perspective that defects and inclusions are virtually equivalent to small cracks. This concept will help one to understand various fatigue phenomena caused by Ductile Cast Iron. For different ferrite-pearlite matrix structure, containing more than 90% spheroidal ratio of graphite, GCD 45-3, GCD 50, GCD 60 series and 70%, 80%, 90% spheroidal ratio of graphite, GCD 40, GCD 45-1, GCD 45-2 series, this paper has carried out image analyzer, estimated maximum and mean size of graphite, investigated correlation. It was concluded as follows. (1) A good quality of Ductile cast iron using in this experiment, the graphite was separated well. The effect of the interaction by graphite was verified by microscopic observation and by fracture mechanics investigation in surface, interior of the specimen. (2)${\sqrt{area}}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of ${\sqrt{area}}$ may be used as a guide line for the control of inclusion size in the steel making processes.

$Si_3N_4$ Coating for Improvement of Anti-oxidation and Anti-wear Properties by Low Pressure Chemical Vapor Deposition (저압화학기상증착법에 의한 $Si_3N_4$ 내산화.내마모 코팅)

  • Lee, Seung-Yun;Kim, Ok-Hee;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.835-841
    • /
    • 1995
  • The deposition properties of Si$_3$N$_4$ deposited by low pressure chemical vapor deposition were studied to evaluate Si$_3$N$_4$as part of multi-layer coatings for anti-oxidation and anti-wear coating of graphite in the propellant-burning environment. Si$_3$N$_4$was deposited on the pack-SiC coated graphite and the tendencies of deposition rate and surface morphology changes with temperatures and reaction gas ratios were investigated. In low deposition temperatures the deposition rate increased tilth increasing temperature but in high temperatures the deposition rate decreased with increasing temperature. The grain size of Si$_3$N$_4$decreased with increasing temperature. In condition that the range of reaction gas ratios is 20$\leq$NH$_3$/SiH$_4$$\leq$40, the deposition rate and surface morphology did not change. The Si$_3$N$_4$deposited at 800~130$0^{\circ}C$ was amorphous, and by post-annealing at 130$0^{\circ}C$ in a $N_2$ambient, the Si$_3$N$_4$crystalized.

  • PDF

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor (회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.901-908
    • /
    • 2018
  • Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.

The Effect of Internal Chills on the Solidified Structure and Chemical Segregation (응고조직 및 성분편석에 미치는 내부냉금의 효과)

  • Kim, Myeong-Han;Jo, Hyeon-Nam;Kim, Jeong-Gyeom;Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.883-889
    • /
    • 1999
  • The pure Al or-(1,2,3wt%)Cu alloy internal chill with 4,6,8,12 and 15mm ø, respectively, was inserted at the center of a graphite mold with the size of 95mm ø$\times$200mm H. The molten metal with the same composition as the internal chill was poured into the mold at the pouring temperature of $750^{\circ}C$ and the cooling rates, solidified structures and chemical segregation were analyzed. The results represented that there was remarkable increased in cooling rate as well as decrease in grain size, secondary dendrite arm spacing and chemical segregation as the ratio of ingot to internal chill diameter was increased to 8. However there was a considerable drop of the internal chill effect when this ratio exceeded 8, resulting from incomplete melting of internal chills. The optimum ratio for the maximum internal chill effect of pure Al and-(1,2,3wt%)Cu allolys was 8 at the given pouring temperature.

  • PDF