• Title/Summary/Keyword: 흐름예측

Search Result 1,221, Processing Time 0.038 seconds

personality Disease Prediction of Classic Astrology (고전점성학의 질병예측 및 활용방안)

  • Cho, Man-Seob
    • Industry Promotion Research
    • /
    • v.7 no.3
    • /
    • pp.103-113
    • /
    • 2022
  • In this study, in the Nativity birth chart of Classic Astrology, the study was conducted under the premise that 'If the natives are born with different structures to govern their diseases, diseases may appear differently in the lives of natives.' did. In the birth chart, an individual's innate health was analyzed through the strengths and weaknesses of sign, planets, and aspects. In the case of managing congenital diseases, we studied the aspect relationship between the native's ASC constellation and the fixed star and planet in the Nativity Birth Chart. In the case of controlling acquired diseases, it was judged by examining the constellations, rulers, and planets of the 6th house that control diseases in the Nativity birth chart. In the case of acquired diseases, natives may be exposed to various accidents and diseases throughout their lives. So, we looked at the relationship between diseases through the energy and weakness of the planet coming through Pirdaria, the aspect relationship with the planet, and fixed star. As a result of the study, a native's health status is given differently depending on the strength and weakness of the innate sign and planet in the Nativity Birth Chart. And it has been proven that the health of the native is determined by the state of the 6th House, who rules over disease, and the disease and accidents that come from Direction are determined by the relationship between the planet and the aspect coming from Pirdaria.

Geochemical Characteristics of Baengnyongdonggul Cave Water, Pyeongchang, Gangwon State (강원특별자치도 평창 백룡동굴 동굴수의 지구화학적 특성)

  • Youngyun Park;Lyoun Kim;Jonghee Lee;Mun Bok Choi
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.413-426
    • /
    • 2023
  • This study presents the geochemical characteristics of cave water to evaluate its origin and flow path. From June 2022 to may 2023, river water was collected at two sites (WE1 and WE2) in the Donggang River around Baengnyongdonggul Cave, and cave water was collected at four sites (WE3 to WE6) inside Baengnyongdonggul Cave. Water samples were analyzed for major dissolved components. Both river and cave waters were classified as Ca-HCO3 type. All cave water samples were supersaturated in carbonate minerals, suggesting that carbonate minerals would precipitate within the cave. Due to differences in the source of cave water and the degree of water-rock interaction, the geochemical characteristics of water from sites where the flow of cave water is observed (WE3 and WE6) and rimstone pools (WE4 and WE5) could be clearly distinguished. The cave water at WE6 flows in from the Donggang River, then passes through WE3 and flows back out into the Donggang River. The cave water at WE4 and WE5 is supplied from precipitation, but the flow path of cave water at WE4 and WE5 is different.

Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils (포화도에 따른 흙의 전기전도도 변화에 대한 실험적 연구)

  • Ko, Hyojung;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.29-39
    • /
    • 2023
  • The degree of saturation determines the connectivity of void space and the particle surface. Thus, it greatly affects the electrical conductivity of soils. This study aimed to analyze the electrical conductivities of coarse grains with a high relevance of pore water conduction and fine grains with a high relevance of surface conduction based on the degree of saturation. It also aimed to express the electrical conductivity of unsaturated soils as a combination of surface and pore water conductions using the modified Archie's equation. Samples were prepared in a plastic cell equipped with four electrodes, and the electrical conductivity was measured based on the porosity at various degrees of saturation (40%~100%). The results demonstrate that Archie's equation can be used to express the electrical conductivity of coarse grains, with a saturation exponent of ~1.93 regardless of the pore water conductivity. However, the saturation exponent of fine grains varied considerably with pore water concentration. This variation can be attributed to the relative magnitude of surface conduction with respect to the electrical conductivity of soils at different pore water concentrations. Thus, the degree of saturation has varying effects on pore water conduction and surface conduction. Therefore, different saturation exponents must be used for pore water conduction and surface conduction to predict the electrical conductivity of unsaturated soils using the modified Archie's equation.

A Study of Pre-Service Secondary Science Teacher's Conceptual Understanding on Carbon Neutral: Focused on Eye Tracking System (탄소중립에 관한 중등 과학 예비교사들의 개념 이해 연구 : 시선추적시스템을 중심으로)

  • Younjeong Heo;Shin Han;Hyoungbum Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.261-275
    • /
    • 2023
  • The purpose of this study was to analyze the conceptual understanding of carbon neutrality among secondary school science pre-service teachers, as well as to identify gaze patterns in visual materials. For this study, gaze tracking data of 20 pre-service secondary school science teachers were analyzed. Through this, the levels of conceptual understanding of carbon neutrality were categorized for the participants, and differences in gaze patterns were analyzed based on the degree of conceptual understanding of carbon neutrality. The research findings are as follows. First, as a result of performing modeling activities to predict carbon emissions and removals until 2100 using the concept of '2050 carbon neutrality,' 50% of the participants held a conception that carbon emissions would continue to increase. Additionally, 25% of the participants did not properly understand the causal relationship between net carbon dioxide emissions and cumulative concentrations. Second, the gaze movements of the participants regarding visual materials related to carbon neutrality were significantly influenced by the information presented in the text area, and in the case of graphs, the focus was mainly on the data area. Moreover, when visual data with the same function and category were arranged, participants showed the most interest in materials explaining concepts or visual data placed on the left side. This implies a preference for specific positions or orders. Participants with lower levels of conceptual understanding and inadequate grasp of causal relationships among elements exhibited notably reduced concentration and overall gaze flow. These findings suggest that conceptual understanding of carbon neutrality including climate change and natural disaster significantly influences interest in and engagement with visual materials.

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach (3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측)

  • Park, Jung Woong;Kim, Tae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.841-848
    • /
    • 2006
  • There is a complex variation of stress in PSC anchorage zones and box girder diaphragms because of large concentrated load by prestress. According to the AASHTO LFRD design code, three-dimensional effects due to concentrated jacking loads shall be investigated using three-dimensional analysis procedures or may be approximated by considering separate submodels for two or more planes. In this case, the interaction of the submodels should be considered, and the model loads and results should be consistent. However, box girder diaphragms are 3-dimensional disturbed region which requires a fully three-dimensional model, and two-dimensional models are not satisfactory to model the flow of forces in diaphragms. In this study, the strengths of the prestressed box girder diaphragms are predicted using the 3-dimensional grid strut-tie model approach, which were tested to failure in University of Texas. According to the analysis results, the 3-dimensional strut-tie model approach can be possibly applied to the analysis and design of PSC box girder anchorage zones as a reasonable computer-aided approach with satisfied accuracy.

Estimation of Habitat Suitability Index of Fish Inhabiting the Seomjin River using WDFW and IFASG Methods (WDFW 및 IFASG 방법으로 섬진강 서식 어류의 서식지적합도지수(HSI) 산정)

  • Lee, Jong Jin;Kong, Dong Soo;Hur, Jun Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.484-484
    • /
    • 2022
  • 서식지적합도지수(Habitat Suitability Index, HSI)는 어류의 환경생태유량(Environmental Ecological Flow) 산정과 관련해 국내외에서 PHABSIM (Physical Habitat Simulation System)이나 River2D 모형과 같은 생태수리 모형에 적용되고 있으며, 특히 물리적서식지모의시스템은 흐름특성(유량유속, 수심 등)의 변화에 대한 하도구간 내 대표어종의 물리적 서식지 변화를 예측하여 대상 어종에 대한 가용서식지면적(어류가 살 수 있는 서식지 면적, Weighed Usable Area, WUA)유량 관계를 통해 서식에 필요한 최적 유량을 산정하는 데 목적이 있다. 물리적 서식지적합도지수 산정과 화학적 서식지적합도지수 산정방법은 WDFW (Washington Department of Fish and Wildlife, 2004)방법과 IFASG (Instream Flow and Aquatic Systems Group, 1986)의 방법으로 산정하였다. 섬진강에서 2020년에는 3개지점, 2021년에는 2020년 3개지점과 새로운 3개지점에 대하여 각각 4, 5, 6, 9, 10 및 11월에 어류 조사 및 물리적 조건 등에 대하여 현장 모니터링을 실시하였다. 2차년도 동안 모니터링 결과 섬진강에서는 줄납자루, 섬진자가사리, 참중고기, 참몰개, 잉어, 붕어, 칼납자루, 큰납지리, 누치, 모래무지, 피라미, 치리, 블루길, 배스 14종에 대하여 물리적 및 화학적 HSI를 산정하였다. 주요종의 WDFW 방법에 따른 큰줄납자루는 수심 0.3~0.6 m, 유속 0.1~0.4 m/s, 섬진자가사리는 수심 0.2~0.5 m, 유속 0.3~0.7 m/s, 참중고기는 수심 0.4~0.8 m, 유속 0.1~0.6 m/s, 피라미는 수심 0.3~0.7 m, 유속 0.1~0.5 m/s로 산정되었다. IFASG 방법으로 큰줄납자루는 섬진강에서는 수심 0.64 m에서 최대의 출현도를 보였으며, HSI는 0.46~0.83 m, 유속은 0.59 m/s에서 최대의 출현도를 보였고, HSI는 0.38~0.83 m/s, 하상기질의 선호도는 평균입경(𝚽m) -1.14(grevel)에서 최대의 출현도를 보였으며, HSI -3.35~0.65(grevel~sand)로 산정되었다. 화학적 HSI 산정결과 큰줄납자루는 BOD는 1.0 mg/L에서 최대 출현도를 보였고, HSI는 0.7~1.2 mg/L, T-N은 0.925 mg/L에서 최대 출현도를 보이며 HSI는 0.604~1.277 mg/L, T-P는 0.028 mg/L에서 최대 출현도를 보이며 HSI는 0.021~0.034 mg/L, SS는 3.6 mg/L에서 최대 출현도를 보이며, HSI는 2.1~5.2 mg/L의 범위로 산정되었다. 산정된 범위는 환경부 생활환경기준 BOD 매우좋음(Ia)~좋음(Ib), T-P 매우좋음(Ia)~좋음(Ib) 등급으로 각각 확인되었다. 본 과제는 3차년(2022년)이 아직 남아 있어 HSI에 대하여 약간 보정이 있을 것이며, 최종 HSI가 산정이 되면 향후 환경적 기능을 고려한 중장기 정부 정책의 활용성 높은 기초자료가 될 것이다.

  • PDF

Comparison of the Characteristics between the Dynamical Model and the Artificial Intelligence Model of the Lorenz System (Lorenz 시스템의 역학 모델과 자료기반 인공지능 모델의 특성 비교)

  • YOUNG HO KIM;NAKYOUNG IM;MIN WOO KIM;JAE HEE JEONG;EUN SEO JEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.133-142
    • /
    • 2023
  • In this paper, we built a data-driven artificial intelligence model using RNN-LSTM (Recurrent Neural Networks-Long Short-Term Memory) to predict the Lorenz system, and examined the possibility of whether this model can replace chaotic dynamic models. We confirmed that the data-driven model reflects the chaotic nature of the Lorenz system, where a small error in the initial conditions produces fundamentally different results, and the system moves around two stable poles, repeating the transition process, the characteristic of "deterministic non-periodic flow", and simulates the bifurcation phenomenon. We also demonstrated the advantage of adjusting integration time intervals to reduce computational resources in data-driven models. Thus, we anticipate expanding the applicability of data-driven artificial intelligence models through future research on refining data-driven models and data assimilation techniques for data-driven models.

Production and Spatiotemporal Analysis of High-Resolution Temperature-Humidity Index and Heat Stress Days Distribution (고해상도 온습도지수 및 고온 스트레스 일수 분포도의 제작과 이를 활용한 시공간적 변화 분석)

  • Dae Gyoon Kang;Dae-Jun Kim;Jin-Hee Kim;Eun-Jeong Yun;Eun-Hye Ban;Yong Seok Kim;Sera Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.446-454
    • /
    • 2023
  • The impact of climate change on agriculture is substantial, especially as global warming is projected to lead to varying temperature and humidity patterns in the future. These changes pose a higher risk for both crops and livestock, exposing them to environmental stressors under altered climatic conditions. Specifically, as temperatures are expected to rise, the risk of heat stress is assessable through the Temperature-Humidity Index (THI), derived from temperature and relative humidity data. This study involved the comparison of THI collected from 10 Korea Meteorological Administration ASOS stations spanning a 60-year period from 1961 to 2020. Moreover, high-resolution temperature and humidity distribution data from 1981 to 2020 were employed to generate high-resolution TH I distributions, analyzing temporal changes. Additionally, the number of days characterized by heat stress, derived from TH I, was compared over different time periods. Generally, TH I showed an upward trend over the past, albeit with varying rates across different locations. As TH I increased, the frequency of heat stress days also rose, indicating potential future cost increases in the livestock industry due to heat-related challenges. The findings emphasize the feasibility of evaluating heat stress risk in livestock using THI and underscore the need for research analyzing THI under future climate change scenarios.

A Review of Image Analysis Techniques for Investigating Solute Transport in Porous Media (비파괴적 기법을 활용한 다공성 매체에서의 용질 이동 메커니즘 분석에 대한 고찰)

  • Seonggan Jang;Taeseop Kim;Changmin Kim;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.473-496
    • /
    • 2024
  • This study reviewed image analysis techniques used in non-destructive investigations of solute transport mechanisms in porous media during contaminant transport. Commonly employed image analysis methods include X-ray imaging, light-transmission visualization, and light-reflection visualization using ultraviolet or visible light. These techniques provide precise, high-resolution data on solute concentration distributions, fluid flow dynamics, and multiphase systems. Through continuous monitoring without alteration of the experimental setup, they provide accurate insights into solute transport mechanisms. We outline the principles, applications, advantages, and limitations of each method, and explore their contribution to the understanding and prediction of solute transport. We also examine case studies in which these methods have been effectively applied. This review provides a comprehensive understanding of how image analysis techniques can contribute to addressing environmental issues such as groundwater contamination.