• Title/Summary/Keyword: 휨 인장강도

Search Result 419, Processing Time 0.03 seconds

Strength Properties of Ultrarapid-Hardening Acrylic-Modified Concrete (아크릴 개질 초속경 폴리머 시멘트 콘크리트의 강도 특성)

  • Joo, Myung-Ki;Noh, Byung-Chul;Kim, Young-Sang;Choi, Kyu-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.945-948
    • /
    • 2008
  • The effects of polymer-cement ratio on strength properties of ultrarapid-hardening acrylic-modified concretes. As a result, the flexural and tensile strengths of ultrarapid-hardening acrylic-modified concretes increase with increasing of polymer-cement ratio. In particular, the acrylic-modified concretes with a polymer-cement ratio of 20% provide approximately 1.5 times higher flexural and tensile strengths than unmodified concretes. Such high strength development is attributed to the high flexrul and tensile strengths of arcylic polymer and the improved bond between cement hydrates and aggregates because of the addition of acrylic polymer. However, the compressive strengths of ultrarapid-hardening acrylic-modified concretes decrease with increasing of polymer-cement ratio.

  • PDF

A Study on the Strength Characteristics and Rebound Ratio with Respect to Injection Pressure of Shotcrete (숏크리트의 강도 특성과 분사압력에 대한 리바운드율 연구)

  • Jeon, Jun Tai;Moon, In Gi;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Steel Fiber Reinforced Wet-type Shotcrete improves the quality and stabilizes the tunnel by increasing the shear strength of the natural ground by constructing the concrete which attaches the fresh concrete to the predetermined position from the nozzle. The Steel Fiber Reinforced Wet-type Shotcrete improves and reinforces the strength and dynamic behavior characteristics of concrete to suppress the generation and growth of local cracks by increasing the tensile resistance ability. In addition, Steel Fiber Reinforced Wet-type Shotcrete is a shotcrete that improves tensile strength, bending strength, and crack resistance by dispersing discontinuous short steel fibers evenly in concrete. In this study, compressive strength test and bending strength test of shotcrete of NATM tunnel were measured and rebound reduction rate was measured by varying shotcrete putting pressure to 900 RPM, 1,000 RPM, and 1,100 RPM. Therefore, the data that can be applied to domestic NATM tunnel construction are presented.

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

A Study on Bond Properties of Joint Grouting Materials for Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 이음부 채움재의 부착특성연구)

  • 김영진;정철헌;심창수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.153-159
    • /
    • 1998
  • 최근 교통량의 증가에 의해 직접 하중을 부담하는 교량바닥판의 손상이 심각한문제로 부각되고 있다. 더욱이 차량하중의 증가는 바닥판손상을 더욱 가속화시키고 있는 실정이다. 바닥판의 손상이 심한 경우에는 교체 또는 성능개선공사를 시행하게 되는데, 이때 기존의 현장타설바닥판이 갖는 단점을 보완할 수 있는 프리캐스트 콘크리트 바닥판은 공기단축, 품질확보 등의 측면에서 매우 효과적인 대체공법이 될 수 있다. 프리캐스트 콘크리트 바닥판은 기존의 현장타설바닥판과달리 바닥판간에 이음부를 갖는 구조적 특징이 있으며, 다양한응력상태에 있는 바닥판중에 존재하는 비연속부인 이음부와 콘크리트 부재사이의 원활한 하중전달을 위해 부착강도는 매우 중요하다. 따라서 본 연구에서는 이음부의 부착강도를 함리적으로 평가할 수 있는 새로운 실험방법을 제안하고 이를 이용하여 휨, 직접인장 및 전단실험을 수행하였다. 또한 구성재료에 대한 압축, 휨인장 및 할렬인장강도 특성도 평가하였 다. 부착 및 강도특성에 관한 실험결과, 제안된 실험방법을 이용하면 실제에 근접한 부착강도를 평가할 수 있으며 국내에서 사용되는 충전재료중 무수축모르터가 프리캐스트 콘크리트 바닥판간 이음부의 채움재로서의 기본요건을 만족하고 있는 것을 알 수 있었다.

Moment Capacity of Reinforced Concrete Members Strengthened with FRP (FRP 보강 철근콘크리트 부재의 휨모멘트)

  • Cho, Baik-Soon;Kim, Seong-Do;Back, Sung-Yong;Choi, Eun-Soo;Choi, Yong-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.315-323
    • /
    • 2010
  • Five concrete compressive stress-strain models have been analyzed to check the validity of the strength method for determining the nominal moment of strengthened members using commercially available computer language. The results show that the concrete stress-strain models do not influence on the flexural analysis. The moment of a strengthened member obtained from the flexural analysis at concrete compressive strain reaching 0.003 is well agreed with nominal moment using the strength method. The flexural analysis results show that when the steel reinforcement, FRP ratio, FRP failure strain, and concrete failure compressive strain are relatively lower, the strength method overestimates the flexural capacity of the strengthened members.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

Analysis of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Shaped Steel with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 바닥판과 역T형 강재 합성보의 휨거동 해석)

  • Yoo, Sung-Won;Yang, In-Hwan;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.185-193
    • /
    • 2015
  • Ultra high performance concrete (UHPC) has been developed to overcome the low tensile strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Moment-Curvature Analysis of Steel Fiber-Reinforced Ultra High Performance Concrete Beams with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 보의 모멘트-곡률 해석)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.237-248
    • /
    • 2011
  • Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling and numerical analysis method are necessary for the prediction of structural performance of steel fiber-reinforced concrete. The numerical method to predict the flexural behavior is proposed in this study. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack opening displacement relationship is considered. Thereafter material modeling is performed considering tension softening. The comparison of moment-curvature curves of the numerical analysis results with the test results indicates a reasonable agreement. Therefore, the present numerical results prove that good prediction of flexural behavior of steel fiber-reinforced ultra high performance concrete beams can be achieved by employing the proposed method.

Studies on the Production and Property of Light Weight Concrete (경량(輕量)콘크리트의 제조(製造)와 그 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Kang, Sin Up;Cho, Seong Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.310-323
    • /
    • 1983
  • To study the effect of foaming agent on the production and property of light weight concrete, the tests of compressive, tensile, bending strengths and absorption rates of mortar were done under the different mixing ratio with J, A and D foaming agents. The results obtained were summarized as follows : 1. The strengths were decreased in richer mixing ratio and more addition of foaming agent. The decrease of strengths was the greatest at the level of 0.75% of foaming agent. The decreasing rate of strengths was in order of J, A and D foaming agent. 2. At the mixing ratio of 1:1, ${\sigma}_{28}$ and 0.75% of foaming agent, the compressive strength was decreased up to 34.9% by D, 47.8% by A and 86.8% by J foaming agent, respectively, the tensile strength was decreased up to 14.8% by D, 20.2% by A and 77.9% by J foaming agent, respectively, bending strength was decreased up to 19.9% by D, 35.0% by A and 79.1% by J foaming agent, respectively. The decrease of compressive strength was more severe than that of tensile and bending strengths. 3. The absorption rates were increased in poorer mixing ratio and more addition of foaming agent. The absorption rate was significantly higher at the early stage of immersed water. The absorption rate was in order of J, A and D foaming agent. 4. The decrease of strengths was inevitable in cement-mortar with foaming agent, but the cement mortar with foaming agent has such the properties of the light-weight, lnsulation, Keeping-warmth, sound proof and fire-proof that if could be utilized to the constructions which need low strengths.

  • PDF

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.