• Title/Summary/Keyword: 휨전단파괴

Search Result 248, Processing Time 0.03 seconds

Failure of RC Slabs Strengthened with CFRP Plate (탄소섬유판으로 보강한 철근콘크리트 슬래브의 파괴)

  • Kim, Joong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1999
  • Carbon fibre reinforced plastic(CFRP) plate is one of the alternative materials for strengthening of reinforced and prestressed concrete members due to excellent strength and light weight. In this paper, the behavior of slabs strengthened with CFRP plate is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear force appear in same position. The failure mode is a peeling-off of the CFRP plate due to flexural-shear crack. This is observed near the loading points with thick plates. Because of this failure mode, thickness of CFRP plates does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When large moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened slab and moment of unstrengthened slab is proposed 1.5-2.0.

  • PDF

An Experimental Study on Flexural Behaviors of Hybrid PSC-Steel Beam with Perfobond rib connectors (Perfobond rib 전단연결재로 연결된 PSC-강 혼합구조 보의 휨 거동 실험)

  • Yoon, Ji-Hyun;Won, Jeong-Hun;Kim, Sang-Hyo;Lee, Chan-Goo;Kim, Sung-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.101-102
    • /
    • 2009
  • This paper presents experimental results of a PSC-steel hybrid beam connected with the joints which has perfobond rib shear connectors. The flexural behaviors and failure modes are investigated to verify the structural capacity of a tested hybrid beam.

  • PDF

A Study on the Dynamic Response of RC "L" Joint Under the Simulated Seismic Load (모의 지진하중을 받는 RC "L" joint의 동적거동에 관한 연구)

  • 박승범;청궁리
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.100-107
    • /
    • 1982
  • 최근 철근 콘크리트 구조물의 지진하중 및 이와 유사한 진동하중에 대한 내진안전성 문제가 대두되어 이에 관한 모형공식체의 진동실험 및 실존구조물의 동적구조특성의 해석 등에 의한 내진성 향상을 위한 보강방법이 강구되고 있다. 본 연구에서는 진동하중에 파괴되기 쉬룬 철근 콘크리트 보와 기둥이 상호 교차되는 죠인트 구역의 동적파괴거동을 확인하기 위하여 "L"형 철근 콘크리트 죠인트와 부재를 제작, 모의지진하중 조건하에서의 동적 응답특성을 구명하고자 반복하중에 따른 joint구역과 보 및 기둥의 동적파괴거동을 고찰하였다. 특히 내진구조물 설계에 주요 요소인 연성(m)이 0.5, 1.0, 3.0일 때 각각 3회씩 그리고 m=5.0일 때 부재가 완전히 파괴될 때까지 4회 반복하여 반복하중을 작용시키면서 이때의 부재의 극한강도 및 그 변형성능을 LVDT System을 사용하여 조사분석하였으며, 파괴성상은 물론 배근효과에 대하여도 이를 구명하고자 노력하였다. 본 연구 결과 무엇보다도 부재의 강성과 내력의 향상 및 신축만곡, 전단변형 등의 변형성능의 개선 그리고 보의 휨파괴에 대한 보강 및 joint구역의 전단보강은 내진구조물 설계를 위하여 중요 사항임을 확인하였다.

  • PDF

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Existing RC deck and Simplified Composite Deck Comparative Analysis Of Punching Shear Strength (기존 RC 바닥판과 초간편 강합성 바닥판의 펀칭전단강도에 대한 비교 분석)

  • Lee, Sung-Yul;Yoon, Ki-Ying;Yi, Gyu-Sei;Kim, Sang-Seup
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.33-36
    • /
    • 2009
  • 현행 도로교설계기준의 바닥판에 대한 설계방법은 휨 이론에 따라 바닥판을 단위 폭의 보로 보고 강도설계법으로 설계하고 있다. 그러나 실제 교량 바닥판의 파괴 형태는 펀칭에 의한 파괴이므로 바닥판의 극한성능은 펀칭전단강도를 토대로 평가해야 할 것이다. 하지만 기존에 연구된 결과로는 초간편 강합성 바닥판의 펀칭전단강도를 산정하기 어려워 이에 대한 연구가 필요한 실정이다. 본 연구에서는 개발된 초간편 강합성 바닥판의 펀칭전단성능을 파악하기 위하여 초간편 강합성 바닥판과 RC바닥판에 대한 펀칭전단실험을 실시하여 비교하여 보았다.

  • PDF

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

Failure Mode and Design Guideline for Reinforced Concrete Slab Strengthened Using Carbon FRP Grid (Carbon FRP Grid로 휨 보강한 철근콘크리트 슬래브의 파괴형태와 설계기준)

  • Park Sang-Yeol;Xian Cui
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.667-675
    • /
    • 2004
  • This paper presents the failure mode and strengthening design of reinforced concrete slab strengthened with Carbon Fiber Reinforced Polymer(CFRP) grid. Parameters involved in this experimental study are FRP grid reinforcement quantity, repair mortar thickness, the presence of anchor, and strengthening in compression. In this study, there are different failure types with increasing the CFRP grid strengthening reinforcement. On the low strengthening level, CFRP grid in repair mortar cover ruptures. On the moderate strengthening level, there is a debonding shear failure in the interface of carbon FRP grid because of the excessive shear deformation. On the high strengthening level, diagonal shear failure occurs. With the increasing of FRP grid reinforcement, the strengthening effect increased, but the ductility decreased. By limiting the strengthening level, it can be achieved to prevent shear failure which result in sudden loss in the resisting load capacity. CFRP rupture failure is desirable, because CFRP ruptured concrete slab keeps the same load capacity and ductility haying before strengthening even after failure. Finally, design guideline and procedure are given for strengthening of concrete slab with CFRP grid.

Seismic Capacity Evaluation of Low-Rise Reinforced Concrete Buildings in Korea (국내 저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok;Kim, Yong-In;Min, Kyung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.241-244
    • /
    • 2008
  • The authors proposed a new rapid-screening method for more reasonably evaluating seismic capacities of medium and low-rise RC buildings controlled by both shear and flexure in Ref. [1]. The method proposed in Ref. [1] was based on relationships between required strengths of each failure system for ductility factors and damage degrees of overall system derived from the view-point of ductility factors. The proposed method was also verified using observed real damage data of low-rise RC buildings caused by past earthquakes. Results indicated that the methodology proposed in Ref. [1] compares well with real damages and is a useful strategy for rapidly identifying low-rise RC buildings having high potential seismic risk. In this study, in order to verify the applicability of the new methodology proposed in Ref. [1] to real RC building systems, seismic capacities of existing eleven low-rise RC buildings in Korea are evaluated based on the new method.

  • PDF

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.