• Title/Summary/Keyword: 휨손상

Search Result 168, Processing Time 0.023 seconds

Flexural performance evaluation of fiber reinforced segments with GFRP plate (GFRP plate를 적용한 섬유보강세그먼트의 휨성능 평가)

  • Oh, Ri-On;Park, Sung-Ki;Sung, Sang-Kyung;Lee, Jae-Young;Kim, Hwang-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.839-854
    • /
    • 2018
  • This study was performed to evaluate the performance of GFRP plate reinforced segments for TBM tunnel support. Recently, the SFRC segment has been applied to prevent local damage such as reduction of the amount of reinforcing bars of the segment, crack control and breakage. However, the steel fiber used in the SFRC segment has a problem of durability deterioration due to fiber corrosion. Compared with the RC segment, the maximum flexural load reduction of the SFRC segment hinders the broad application range of the TBM tunnel segment. Therefore, GFRP plate was considered as a stiffener for the maximum load increase of SFRC segment, and structural synthetic fiber without corrosive concern was used as a substitute for steel fiber. The flexural performance of the segment was evaluated by using the type of reinforcing fiber and GFRP plate thickness as the main parameters. As a result, the maximum load and the flexural toughness were increased by 21.78~23.03% and 0.5~7.96%, respectively, as compared with the segments reinforced with reinforcing fiber and GFRP plate of 3 mm thickness.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

Acoustic Emission Signal Analysis for Damage Assessment of the Reinforced Concrete Slab Structures (철근 콘크리트 슬래브 구조 손상 평가를 위한 음향방출 신호분석)

  • Kim, Jeong-Hee;Han, Byeong-Hee;Seo, Dae-Cheol;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.360-367
    • /
    • 2009
  • The acoustic emission(AE) behavior of reinforced concrete slab under flexural loading was investigated to assess the integrity. This study was aimed at identifying the characteristics of AE response associated with damage development. By applying cyclic loading in various load steps, it was able to differentiate each AE source such as distributed micro crack initiation, friction, flexural crack and localized diagonal tension crack. The secondary peak and the change of AE hit rate gave valuable criteria fur assessment. From the analysis of the felicity ratio, furthermore, it was shown that this values can be used for evaluating the degree of concrete damage. Based on the experimental results, this approach for practical AE application may provide a promising method for estimating the level of damage and distress in concrete structures.

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

A Study on the Flexural Capacity of Reinforced Timber Beams with the Inserting Method of CFRP Plates (탄소섬유판 삽입공법으로 보강된 목재보 휨강도에 관한 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran;Lee, Jin-Hyuk;Choi, Min-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • When historical or cultural buildings need to be repaired or reinforced, the changes of original features should be minimized, and the strengths of structures should be improved. Among the existing methods to reinforce historical wood structures, the carbon fiber reinforcement polymer (CFRP) installation method is one of the best ones to achieve the afore-mentioned requirements. Therefore, this study aims at investigating the reinforcing effects and failure modes of timber beams reinforced with the inserted CFRP, a part of roof trusses in modern wood structures, and at providing the fundamental test data to estimate the CFRP rein-forced timber beam in the application of this reinforcing method. The primary parameters in this study were the layout and amount of CFRP. It was observed that, when $0.3{\sim}0.7%$ of CFRP were installed, the strengths of reinforced timber beams increased up to 173% compared to its original strength, but their strengthening effects were heavily influenced by the characteristics of timber such as burls. In order to improve the applicability of this strengthening method, fundamental understandings on the characteristics of wood would be necessary, and there would be in need of researches on the non-destructive test for wood structures as well.

A Study on the Relation of Rebar Corrosion Rate and the Strength Reliability Index of RC Slab Decks having Chloride Contamination (염해 손상을 받는 RC 교량 바닥판의 강도 신뢰성 지수와 철근 부식도 등급과의 관계 연구)

  • Cha, Chul-Jun;Park, Mi-Yun;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2005
  • This study focuses on evaluating the reliability index of a deck of RC slab having chloride contamination and studying the relation of grades of rebar corrosion and the reliability index of a bridge deck For this purpose, first, the failure probability related to flexural strength was calculated using a model for deterioration, which contains the application of deicing salts that usually causes significant long-term deterioration and reduction in the structural safety for strength of structure. And also, according to the depth of covering, the chloride contents depending on time due to depths of RC slab deck, the appearance time for initial corrosion of rebar and the occurrence time for split of covering were investigated using a MCS method.

PZT Sensor-based Structural Health Monitoring for CFRP Laminated Concrete Structures (CFRP 보강 콘크리트 구조물의 PZT센서 기반 구조 건전성 모니터링)

  • Ryu, Sung-Chan;Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.72-78
    • /
    • 2010
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method is being very widely used to increase the load-carrying capacity of host structures, especially for bridges. However, not only flexure and shear failures but debonding failure also might occur in CFRP strengthened concrete structures. The CFRP debonding failure would cause a collapse accident of the host structure. Therefore, real-time health monitoring about the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors is investigated through a series of experimental study monitoring both concrete cracks and CFRP debonding defects.

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

The Inelastic Behavior of High Strength Reinforced Concrete Tall Walls (고강도 철근콘크리트 고층형 내력벽의 비탄성 거동에 관한 실험 연구)

  • 윤현도;정학영;최창식;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.139-148
    • /
    • 1995
  • The test results from three one fourth scale models using high strength Reinforced Concrete $f_x=704\;kg/cm^2,\;f_y=5.830\;kg/cm^2$ are presented. Such specimens are considered to represent the critical 3 storics of 60-story tall building of a structural wall system in area of high seismicity respectively. They are tested under inplane vertical and horizontal loading. The main varlable is the level of axial stress. The amounts of vertical and horizontal reinforcement are identical for the three walls testcd. The cross-section of all walls is barbell shape. The aspectratio($h_w/I_w$) of test specimen is 1.8. The aim of the study is to investigate the effects of levels of applied axial stresses on the inelastic behavior of high-strength R /C tall walls. Experimental results of high strength R /C tall walls subjected to axial load and simulated sels rnic loading show that it is possible to insure a ductlle dominant performance by promotmg flex ural yielding of vertical reinforcement and that axial stresses within $O.21f_x$ causes an increase in horizontal load-carrying capacity, initial secant st~ffness characteristics, but an decrease in displacement ductility. energy dissipation index and work damage index of high strength K /C tall walls