• Title/Summary/Keyword: 휜튜브

Search Result 14, Processing Time 0.026 seconds

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation of Fin Tube in a Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2016
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift and drag fluctuation over the fin tube was investigated. The derived nondimensional lift PSD was compared with the results of the previous experimental studies and the characteristics of lift and drag PSD over a single fin tube was established from the present CFD study.

Heat transfer on annular fins with one-dimensional radiative and convective heat exchange (원형휜에서 열전달 특성분석)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1621-1628
    • /
    • 1990
  • Numerical solutions are presented for the heat transfer from radiating and convecting fins. Consideration is given to thin, annular fins attached to a tube surface for which the temperature is constant. Fin to fin, fin to base, and fin to environment radiative interactions are considered. It is assumed that the radiating surface is diffuse-gray, the environment is black, and the surrounding fluid is transparent. The radiation terms are formulated by using Poljak's net-radiation methoad. The mathematical description of the simultaneously heat transport by conduction, convection, and radiation leads to a nonlinear integro-differential equation. This has been solved for a wide range of the pertinent physical parameters by using finite difference method and iteration method based on the Newton-Raphson technique. The temperature distributions, heat transfer rates, fin efficiencies, and fin effectivenesses are presented in dimensionless form. The results definitely indicate that the use of fins leads to a significant increase in heat transfer compared with the unfinned tube.

A Study on the fin efficiency of continuous fin - tube heat exchanger, -In the case of sensible heat transfer- (섹터법을 이용한 연속휜-튜브형 열교환기의 휜효율에 관한 연구, -현열 열전달의 경우-)

  • Jung, Hyeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.76-81
    • /
    • 1996
  • In this paper, a calculation method for fin efficiency of continuous fin is introduced. The continuous fin of in-line and staggered arrangement was divided into many sectors and fin efficiencies of each sectors were calculated by assuming that each sectors be the circular fins. To get the converged fin efficiency which is averaged by the each areas, the number of sectors was increased. The results were compared with equivalnet method by varying the aspect ratios in both cases of in-line and staggered tube arrangement and showed some differences of fin efficiencies.

  • PDF

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

A large scale model test to investigate the pressure drop and heat transer characteristics in the air side of two-row heat exchanger (2열 휜 튜브 열교환기의 공기측 압력강하 및 열전달 특성을 고찰하기 위한 확대 모형실험)

  • Gang, Hui-Chan;Kim, Mu-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.113-124
    • /
    • 1997
  • This work is performed to investigate the pressure drop and heat transfer characteristics in the air side of finned-tube heat exchanger for air conditioner. Experimental apparatus and method are described to simulate the heat exchanger performance by using the three times enlarged model. The pressure drop and heat transfer coefficient were measured and compared for the heat exchangers with a plane fin and a commercial strip fin. The measured data for the strip fin agree well with those of prototype within a few percentages. For the plane fin, the measured data had similar trend to Gray & Webb's correlation at high air velocity, however a new correlation is needed to give more accurate prediction at low air velocity. It is found that most heat was transferred around the front row of the two-row heat exchanger, and the ratio of thermal load at the front tube row was increased for decreasing air velocity.

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

Experimental Study of Air-cooled Condensation in Slightly Inclined Circular Tube (경사진 원형관에서의 공냉응축에 관한 실험적 연구)

  • Kim, Dong Eok;Kwon, Tae-Soon;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, the experimental investigation of air-cooled condensation in slightly inclined circular tubes with and without fins has been conducted. In order to assess the effects of the essential parameters, variable air velocities and steam mass flow rates were given to the test section. The heat transfer performance of air-cooled condensation were dominantly affected by the air velocity, however, the increase of the steam mass flow rate gave relatively weaker effects to total heat transfer capability. And in the experimental cases with the finned tube, the total heat transfer rate of the finned tube was significantly larger than that of the flat tube. From those results, it can be confirmed that the most important parameter for air-cooled condensation heat transfer is the convective heat transfer characteristics of air. Therefore, for the well-designed long-term cooling passive safety system, the consideration of the optimal design of the fin geometry is needed, and the experimental and numerical validations of the heat transfer capability of the finned tube would be required.

An Experimental Study on the Performance Characteristics with Height of a Fin-Tube Liquid Desiccant Dehumidifier (휜-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구)

  • Lee, Su-Dong;Park, Moon-Soo;Chung, Jin-Eun;Choi, Young-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.594-603
    • /
    • 2004
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristics of working factor variables such as inlet solution flow rate, air flow rate, solution concentration and brine temperature have been analyzed. This dehumidifier has the ability to provide running while saving the latent heat load of total energy. The result of this experiment can provide useful data for hybrid air conditioning system.

The Analysis of Stress Behavior in welded interface and interface crack of High Frequency Pressure welding of Dissimilar materials for Fin-Tube (Fin-Tube 이종재의 고주파 압접 접합계면 및 계면균열 응력해석)

  • 김도형;이동진;오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.380-385
    • /
    • 2000
  • In this study, geometric shape and crack in welded interface of the air cooled heat exchanger Fin-Tube of Dissimilar Meterials was analysed. The object of study is to understand the behavior of Stress Intensity Factor for fin length, flash thickness, flash length, symmetric and asymmetric cracks of comming from the manufacturing process. Stress Intensity Factor was analysed by BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF