• Title/Summary/Keyword: 후처리 장치

Search Result 796, Processing Time 0.03 seconds

Physicochemical properties of deposited particles on surface of pine leaves as biomarker for air pollution (솔잎가지 표면에 침착된 입자상 물질의 물리화학적 특성 및 대기오염 지표로서의 가능성 고찰)

  • Chung, David;Choi, Jeong-Heui;Lee, Jang-Ho;Lee, Soo-Yong;Lee, Ha-Eun;Park, Ki-Wan;Shim, Kyu-Young;Lee, Jong-Chun
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.247-258
    • /
    • 2018
  • The purpose of the present study was to investigate whether the degree of air pollution can be evaluated via examination of local plants. Selected sites included two parks in an industrial area, as well as two parks in an urban area. Selected plant samples comprised one-year-old pine shoot leaves. Leaves growing over 2 m from the ground were collected from over 10 pine trees. Leaf surface was analyzed for deposition of 14 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs), including particle size and mass, surface imaging, precipitation-mediated particle removal rate, and concentration. Particle size ranged from 0.4 to $200{\mu}m$, and the volume percentage of particles ${\leq}10$ was 20 %. Deposited particle mass ranged from 0.450-0.825 mg, and precipitation-mediated removal rate ranged from 10.0-27.6 %. Trace element concentration, as measured by ICP/MS after microwave acid digestion, was 18.8-26.3 mg/kg As, 0.08-0.13 mg/kg Be, 0.06-0.08 mg/kg Cd, 4.91-17.8 mg/kg Cr, 5.26-405 mg/kg Cu, 1,930-2,670 mg/kg Fe, 3.03-28.1 mg/kg Pb, 26.9-42.8 mg/kg Mn, 2.66-10.4 mg/kg Ni, 4,560-8,730 mg/kg Al, 2,500-6,120 mg/kg Ba, 5.27-17.8 mg/kg Rb, 40.9-95.3 mg/kg Sr, and 4,030-8,260 mg/kg Zn. Concentration of PAHs, as analyzed by GC/MS/MS after liquid-liquid extraction and purification of deposited particles, ranged from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_{16}$ and from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_7$.

Efficiency of concentrating marine microplanktonic organisms using net sampler to verify the efficacy of a ship's ballast water treatment system (USCG phase-II 선박평형수 처리장치 성능 평가에 대비한 해양식물플랑크톤 네트 농축효율 비교)

  • Baek, Seung Ho;Lee, Min Ji;Shin, kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2016
  • To provide a type approval test for Ballast Water Treatment System (BWTS) of United States Coast Guard (USCG) Phase-II, this study examined the concentrating efficiency of nets for ${\geq}10{\mu}m$ and ${\leq}50{\mu}m$ sized phytoplanktonic organisms using different mesh sized nets ($5{\mu}m$ or $7{\mu}m$), different injection methods (hand breaker as semi-continuous assessment or pump as continuous assessment), and different filterability for the water volume. As a result of the t-test, the net concentrated efficiency between $5{\mu}m$ and $7{\mu}m$ mesh size was not significant (p > 0.05). The difference in the net concentrated efficiency for filtered natural water volume was not significant (p > 0.05). On the other hand, the Chl.a concentration in the continuous water injection method was significantly (p < 0.05) higher than that of semi-continuous water injection (t-test: t: -4.058). In the natural phytoplankton community, a total of 36 species were identified, including Bacillariophyta (17 species), Dinophyta (15 species), Euglenophyta (1 species), Dictyochophyta (2 species), and unidentified taxa (1 species). Among them, diatom Pseudo-nitzchia spp. was remarkably dominant. In particular, the net concentrated efficiency in all assessments was underestimated to be approximately 20-25%, which was caused by the small size Pseudo-nitzchia spp.. A width size of these genus might have passed through the $5{\mu}m$ or $7{\mu}m$ mesh size of the net. Therefore, net concentrated efficiency is dependent on the size of the observed species in natural water. This issue should be considered when determining the net volume for the type approval test of BWTS.

A Study on the Characteristics of Oil-water Separation in Non-point Source Control Facility by Coalescence Mechanism of Spiral Buoyant Media (나선형 부유 고분자 여재의 Coalescence 특성을 이용한 비점오염원 저감시설의 유수분리특성 연구)

  • Kang, Sung-Won;Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Kim, Soo-Hae;Kim, Mee-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.950-955
    • /
    • 2007
  • Non-point source control system which had been designed only for oil-water separation in the fields of oil refinery and garage was upgraded in this research for the removal of runoff pollutants in impervious urban area. Pollutants including oil from driveway and bridge were eliminated by two types of pathway in the system. One is the coalescence mechanism that the oil droplets in the runoff come into contact with each other in the spiral buoyant media surface and form larger coalesced droplets of oil that are carried upstream to the oil layer. The other is the precipitation that solids in runoff were settled by gravity in the system. In this research, coalescing characteristics of oil and water separation were investigated through image analyses, and efficiencies of the non-point source control system were evaluated using dust in driveway and waste engine oil. Media made of high density and high molecular weight polyethylene was indeterminate helical shape and had sleek surface by analysing SEM photographs and BET. Surface area and specific gravity of media which were measured directly were 1,428 $mm^2$ and 45.3 $kg/m^3$ respectively. From the image analyses of the oil droplets photographs which were taken by using microscope, it was proved clearly that the coalescence was the main pathway in the removal of oil from the runoff. Finally, the performances of the non-point source control system filled up with the media were suspended solid $86.6\sim95.2%$, $COD_{Cr}$, $87.3\sim95.4%$, n-Hexane extractable materials $71.8\sim94.8%$ respectively.

Use of Sprinkler System for Control of Pine Needle Gall Midge, Thecodiplosis japonensis Uchida et Inouye -II. Effectiveness of Ground Application with Low Concentration of Insecticides (분무장치(噴霧裝置)를 이용(利用)한 솔잎혹파리 방제(防除)에 관(關)한 연구(硏究) -II. 저농도(低濃度) 지면약제살포(地面藥劑撒布) 효과(效果) -)

  • Chung, Sang Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.571-576
    • /
    • 1998
  • Experiments were conducted to evaluate the efficacy of the application of low concentration insecticides by sprinkler system for control of the pine needle gall midge, Thecodiplasis japonensis, by killing the adults emerging and copulating near the ground. For ground spray, 2 insecticides of fenitrothion and deltamethrin, dilutions of $2,000{\times}$ and $3,000{\times}$ deltamethrin, and 3 spray intervals of 1-3 day were tested at the peak time of adult emergence during the day time. The results are as follows ; 1. Ground spray of fenitrothion 50% EC and deltamethrin 1% EC were found to be highly effective for control of the pine needle gall midge. Average gall formation by fenitrothion, deltamethrin and untreated ones were 3.40%, 5.23% and 45.69%, respectively ; control value of both insecticides exceeded 88%. 2. As a ground spray of deltamethrin 1% EC, dilution $2,000{\times}$ was significantly different from $3,000{\times}$ in gall formation rates. Average gall formation of $2,000{\times}$ plots and $3,000{\times}$ treated ones were 5.23% and 18.00% ; control values were 89.44% and 63.66%, respectively. 3. Diurnal treatment of ground spray was found to be highly effective for control of pine needle gall midge. 4. In particular, control by ground application of dilutions $2,000{\times}$ and $3,000{\times}$ of deltamethrin is suggested because it does not have an adverse effect on arthropods of the ground surface such as ants and spiders.

  • PDF

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Application, Utilization and Management of Ozone Water in Food Manufacturing (식품 가공 공정에서의 오존수 관리 동향, 사용 실태 및 활용 방안)

  • Kim, Yong-Soo;Park, In-Sook;Kim, Ae-Young;Jeon, Kyoung-Min;Seo, Yu-Mi;Choi, Sung-Hee;Lee, Young-Ja;Choi, Hyoun-Chul;Jeon, Dae-Hoon;Kim, Hyoung-Il;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.98-107
    • /
    • 2008
  • The ozone has the oxidizing power which is powerful the fluorine and the antimicrobial spectrum of wide scope. Researches were carried out to use the merits that ozone has in various fields including the food industry, and many studies are also conducted nowadays for more efficient use of ozone. The ozone was permitted legally as a food additive and was practically used in the United States, Australia, Japanese etc. In November 2007, ozone water was permitted as a food additive in Korea and the interest in the use of ozone water has been on the rise in the Korea's food industry. As a olisinfectant method, ozone has many advantages. The maintenance and management expenses of ozone are lower than the installation cost at early stages and no by-products are generated after use it compared to others. Recently the demand of ozone as a olisinfectant method is increasing drastically. Although ozone water is popularly used to sterilize raw foods like fruits, vegetables and meats, the cases are still limited and were verified by the survey results. However, the use of ozone water is gradually being increased and is focused on food services. Ozone water refers to a state where ozone is dissolved into water to more conveniently use ozone. Accordingly, ozone water should be managed in regards with the amount and time of water-dissolved ozone, and the control of discharged ozone concentration is required for safe use of ozone water. The items to control mentioned above are directly related to the performance of the devices, and therefore, it is required to newly establish the performance criteria of ozone water manufacturing devices.

A Study on Comparison of Outdoor Wind Pressure Performance According to Outdoor Exposure and Acceleration Deterioration Methods of Structural Sealants Applied to Curtain Wall (커튼월에 적용된 구조용 실링재의 옥외폭로와 실내복합열화 처리방법에 따른 내풍압성능 비교연구)

  • Jang, Pil Sung;Hong, Soon Gu;Kim, Sung Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.279-287
    • /
    • 2018
  • Sealants are an important element of modern architecture and serve as a building protection against weathering by providing barriers against ingress of moisture, air, and other materials. Exposure to a variety of environments often reduces lifespan due to changes in physical, chemical and mechanical characteristics, and UV, humidity, and temperature expansion are important issues that are directly related to durability. In this study, a combined deterioration test chamber was developed to simulate the environment of the open air as an instrument for verifying the durability of structural sealing materials indoors. In order to replicate special weather conditions, such as yellow dust, acid rain, and contamination by microorganisms, it was deemed impossible to replicate the outdoor environment by 100 %, and the results of the results of the results of the external exposure test of the structural sealant and the combined deterioration testing device. As a result of the displacement test of the outdoor exposure test, it was determined that the sealant was breaking apart and that it would be smooth, and the displacement would be up to three times greater than the initial material value of 1 year. The displacement test results of the combined deterioration test device show the tendency to deteriorate, decreasing the elasticity and tensile characteristics. In the case of denatured silicon, the current 400 cycles have been completed to confirm 12 months of degradation of the external exposure. The deformation of the test specimen cannot be verified with the naked eye, so it is considered that the conditions of the specimen are more stable than the silicon sealant. As a result of the outdoor exposure test, if the combined deterioration test device is structured and proposed in the relevant guidance or specification, the anticipated lifespan of 12 months in the actual use environment can be verified indoors and below 3 months later, economically.

Effects of the Brown Seaweed Residues Supplementation on In Vitro Fermentation and Milk Production and Composition of Lactating Dairy Cows (미역부산물 첨가가 In Vitro 발효성상과 젖소의 산유량 및 유성분에 미치는 영향)

  • Baek, I.K.;Maeng, W.J.;Lee, S.H.;Lee, H.G.;Lee, S.R.;Ha, J.K.;Lee, S.S.;Hwang, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-386
    • /
    • 2004
  • This study was conducted to investigate effects of the brown seaweed residues supplementation on in vitro fermentation, and milk yield and milk composition of dairy cows. Therefore, two experiments consisting of an in vitro and an in vivo growth trial were used. In in vitro experiment, brown seaweed residues(BSR) was supplemented in basal diet with 0, 1, 2 and 4% respectively, and incubated for 3, 6, 9, 12, and 24 h. The pH value, ammonia-N and VFA were investigated. The pH value tended to increase with increasing BSR during the incubation. Particularly, pH was significantly higher in BSR treatments compared with control at 9 h(p < 0.05). While, ammonia-N concentration was not significantly different across treatments during the whole incubation. BSR supplementation did not affect total VFA production, but acetate was linearly increased in BSR treatments compared with control at 12 h(p < 0.05), and its concentration was highest(92.70 mM) in 4% BSR among treatments. The concentration of iso-butyrate tended to increase in BSR treatments in comparison to control during the incubation. In addition, the concentration of iso-valerate was higher in BSR treatments compared with control at 12 and 24 h. In growth trial, BSR was added(800 g/d/animaI) to diets of dairy cow. Dry matter intake was not affected by BSR supplementation, but daily milk yield(kg) significantly increased in BSR treatment compared with control(p < 0.05). However, milk composition(%) and milk yield(kg) were not significantly different between treatments. Milk fat(% and kg/d) tended to slightly decrease in BSR treatment compared with control(3.59% and 1.06 kg/d vs. 3.32% and 1.01 kg/d), The contents of C16:0 and C20:4 in milk significantly increased in BSR treatment compared with control reflecting from dietary fatty acid composition. The content of C18:0 in milk which is end product of biohydrogenation of CI8 unsaturated fatty acids in the rumen significantly increased in BSR treatment compared with control(p < 0.05). C18:2 content in milk tended to decrease, but tended to increase trans-II C18:l and CLA contents in milk in BSR treatment compared with control. In conclusion, it could be summarized that BSR may stabilize rumen pH, and it could improve milk yield and CIA content in milk with more than 4% of diet. Therefore, BSR could be beneficially used in dairy diets as a feed additive.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Assessment of CO2 Fertilization Captured in Thermoelectric Power Plant on Leafy Vegetables Grown in Greenhouse (화력발전소 포집 CO2를 이용한 시설 엽채류 시비효과 평가)

  • Jeong, Hyeon Woo;Hwang, Hee Sung;Park, Jeong;Yoon, Seong Ju;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.423-431
    • /
    • 2022
  • Due to increase of interest in 'carbon neutrality', attempts at agricultural use of CO2 are increasing. In this study, we used the dry-ice made by CO2 as by-product in thermoelectric power plant on CO2 fertilization for production of leafy vegetable in greenhouses. The dry-ice was supplied on three leafy vegetable farms (Allium tuberosum Rottl. ex Spreng, Aster scaber, and Oenanthe stolonifera DC.) located in Hadong, Gyeongsangnamdo. Two greenhouses were used in each leaf vegetable crops, one greenhouse used as the control (non-treatment), other greenhouse used as supplied CO2. For CO2 fertilization, a gas sublimated from dry ice was supplied to the greenhouse using a specially designed prototype supply machine. A. tuberosum greenhouse has no difference of CO2 concentration between the control, and CO2 fertilization and shown high CO2 concentration both greenhouses. However, the CO2 concentrations in A. scaber and O. stolonifera greenhouses were increased in CO2 fertilization treatment. The growth of A. scaber and O. stolonifera were increased in CO2 fertilization, and the yield also increased to 36% and 25% than the control, respectively. As a result of economic analysis, the A. scaber has increase of income rate, however A. tuberosum and O. stolonifera has decreased income rate. Thus, the use of the dry-ice made by CO2 as by-product in thermoelectric power plant has possibility to increase productivity of the leafy vegetable in greenhouse and have agricultural use value.