• Title/Summary/Keyword: 후방 압출

Search Result 66, Processing Time 0.024 seconds

Backward Extrusion Process Analysis and Ductile Fracture Minimization of Titanium (티타늄합금의 후방압출 공정해석 및 연성파괴 최소화)

  • 신태진;이유환;이종수;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.351-354
    • /
    • 2003
  • Titanium alloys are a vital element for developing advanced structural components, especially in aerospace applications. However, process design for successful forming of titanium alloy is a difficult task, which is to be achieved within a very narrow range of process parameters. Presented in this paper is a finite element - based optimal design technique as applied to ductile fracture minimization process design in backward extrusion of titanium alloys.

  • PDF

유한요소법을 이용한 Ti-l5V-3Cr-3Al-3Sn 합금의 대형단조품 후방압출 공정설계

  • 정덕진;이종억;이용연;심인옥
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.17-17
    • /
    • 1998
  • 1970년대에 개발된 Ti-15-3 합금은 상온에서 우수한 성형성을 가지고 있어 Ti-6-4 합금보다 성형 공정을 대폭 감소시킬 수 있어 생산비용을 크게 감소시킬 수 있는 장점이 있는 합금이다. 또한, 냉간 성형성이 우수하고 강화 범위가 폭넓기 때문에 항공기의 프레임, 항공기 압력 용기 및 고장력 유압 튜브 등에 많이 사용하고 있으나, 열간 성형성이 Ti-6-4 티타늄 합금보다 좋지 않기 때문에 이제까지의 적용 분야는 판재 성형 등의 한정된 분야에만 적용되어 오고 있는 실정이다.

  • PDF

Determination of Initial Billet Shape to improve Dimension Accuracy in Backdward Extruded Cups (후방압출공정에서 치수정밀도 향상을 위한 초기소재형상 결정)

  • 김호창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.196-200
    • /
    • 1996
  • In general, cylinderical types of billet are use in the backward extrusion. It is difficult to obtain homogenious wall thickness by the backward extrusion using these. It is gradually increased that improving the accuracyand reducing the post machining of the final products. In manufacturing cup shaped parts by backward extrusion, it is very important to design optimal initial billet or preform. These can improve the accuracy of final products and remove the post machining processes. In this study, the influence of final parts geometry by the shape of initial billet as non machined types are discussed.

  • PDF

Deformation Behaviour of Forward -Backward EXtrusion in Rotary Forging Process (회전단조 공정에서 전-후방 압출 특성에 관한 연구)

  • 최석우;윤덕재;임성주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.54-61
    • /
    • 1995
  • Simultaneous forward-backward extrusion upsetting has been carried out by ratray forging. Two materials has been used commericaly 6.61 aluminium ally and 0.2% steel. The effects of working conditions ; spiral feed ; initial aspect ration of specimen and lubricating condition on the backward and forward extrusion were clarified. The extrusion length increases a sthe aspect rationof the specimen increases, the backward extrusion lengthbeing relatively larger than the forward one. The effects of the spiral feed and the material on the extrusion lengthis remarkably large for the large spiral feed.

  • PDF

원형소재에서 타원공 튜브의 후방압출

  • 양동열;배원병;이동희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.46-58
    • /
    • 1991
  • An upper-bound method is applied to determine the final-stage extrsuion load and the deformed configuration of extruded billet. A simple kinematically admissible velocity field for trhee-dimensional deformation at final-stage is proposed. From the proposed velocity field the upper-bound extrusion load, the velocity distribution and the configuration of extruded billet are determined byminimizing the otoal power consumption. Experiments are carried out with full-annealed commercial aluminum billets at room temperature by using different sizes of elliptic punches. The theroretical predictions both in extrusion load and deformed configuration of extruded billet are ingood agreements with the experimentalresults.

A Study on the Forming Characteristics of Forward and Backward Extrusions (전.후방 캔 압출공정의 성형특성 연구)

  • Shim Ji-Hun;Choi Ho-Joon;Ok Jeong-Han;Ham Byoung-Soo;Hwang Beong-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

Prevention of Internal Defects of Cold Extruded Planetary Gears (냉간 압출된 유성기어의 내부결함 방지)

  • Lee, J.-H.;Choi, J.;Lee, Y.-S.;Choi, S.-H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

Multi-stage Cold Forging Process Design and Backward Extrusion Characteristics Evaluation of Serration Gear for Electronic Parking Brake (전자식 파킹 브레이크용 세레이션 기어의 냉간다단단조 공정 설계 및 후방 압출특성에 관한 평가)

  • Seo, Ju-Han;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2022
  • Reducing production costs through net-shaped cold forging is an important aspect in the automobile industry. In this study, we intend to produce a net-shaped electronic parking brake (EPB) serration gear for automobiles, using multi-stage cold forging. These serrations are then assembled to the reduction gear of an EPB actuator. The forging process of the serrations and the cold forging design were verified through finite element analysis (FEA) in order to evaluate metal flow. The forging machine was selected by checking the load using FEA. Based on the FEA results, molds were designed, and parts were made using multi-stage cold forging to produce a net-shaped serration gear.

Process Design in Cold Forging of the Backward and Forward Extruded Part (전.후방 압출품의 냉간단조 공정설계)

  • Min, G.S.;Choi, J.;Choi, J.C.;Kim, B.M.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.57-64
    • /
    • 1997
  • The process design of backward and forward extrusion of axisymmetric part has been studied in this paper. The important factors of cold forging process with complex geometry are the design of initial billet shape, the possibility of forming by one-stage operation and the determination of preform shapes, etc. Based on the systematic procedure of process sequence design, the forming operation of cold forged part is analyzed by the commercial finite element program, DEFORM. The design criteria are forming load, geo- metrical filling without defect and a sound distribution of effective strain in final product. It is noted that one step of preform operation is required to obtain the final product. Numerical result is compared with experi- mental one. It is found that the analyzed result is in good agreement with actual forming result.

  • PDF

An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process (전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향)

  • Kim, M.T.;Noh, J.H.;Hwang, B.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF