• Title/Summary/Keyword: 효소당화

Search Result 274, Processing Time 0.023 seconds

Comparison for enzymic activity of Nuruk and quality properties of Yakju by different fungi (곰팡이 균주에 따른 누룩의 효소활성 및 약주 품질특성 비교)

  • Huh, Chang-Ki;Kim, So-Mang;Kim, Yong-Doo
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.573-580
    • /
    • 2014
  • The enzymatic activity of Nuruk and the quality properties of Yakju were investigated according to different fungi. The fungi that were used in this study were Aspergillus kawachii KCCM 32819, Aspergillus niger KCCM 32005, Rhizopus japonicus KCCM 11604, Rhizopus oryzae KCCM 11272, Rhizopus oryzae KCCM 11273, Rhizopus oryzae KCCM 11276, and Mucor rouxii KCCM 60148. The study results are as follows. The saccharogenic power of Rhizopus oryzae KCCM 11272 Nuruk was the highest (3,647.72 SP/g) among all the samples. The ${\alpha}$-amylase production and protease activities were highest (3.76 DU and 4.7 tyrosine mg/min, respectively) in the Rhizopus japonicus KCCM 11604 Nuruk. The pH levels of the Yakju made with commercial Nuruk and Rhizopus japonicus KCCM 11604 Nuruk were 4.14 and 4.07, respectively. The total titratable acid content of the Yakju made with Rhizopus oryzae KCCM 11273 Nuruk was the highest (0.56%) among all the samples. Rhizopus japonicus KCCM 11604 and Rhizopus oryzae KCCM 11272 had the highest ethanol yields (15.18% and 15.10%, respectively). In the sensory evaluation carried out in this study, the panel preferred the Yakju made with Rhizopus japonicus KCCM 11604 Nuruk. Overall, however, the panel did not like the Yakju made with Aspergillus niger KCCM 32005 Nuruk.

현미를 이용한 식혜의 제조

  • 이원용;김석신
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.211.2-212
    • /
    • 2003
  • 발아현미의 $\alpha$-amylase의 활성도는 발아 보리보다 작았으나 추출물의 함량 및 그 당도는 발아보리와 큰 차이가 없었다. 식혜제조시 발아 현미는 효소활성도가 낮아 보리 엿기름 대신 사용 할 가능성은 없으나 발아 현미를 백미 대신 식혜원료로 사용할 경운 현미 자체를 원료로 사용한 경우보다 당화속도도 빠른 것으로 나타났다. 백미를 이용한 식혜 제조시의 추출물 함량과 당도는 당화 초기 1시간 동안에는 급격히 증가하였으나 그 후에는 커다란 변화를 나타내지 않았다. 발아 현미와 무발아 현미를 이용한 식혜 제조시에는 당화 4시간까지 추출물 함량과 당도가 서서히 증가하는 경향을 나타내었다. 현미를 이용하여 제조한 식혜의 관능검사를 실시한 결과 백미로 제조한 식혜에 비하여 밥알의 조직감은 떨어졌으나 향기의 강도는 더 높았으며, 당도와 전체적인 기호도는 백미와 유의적인 차이를 나타내지 않았다.

  • PDF

Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth (맥주 폐 효모액의 당화 및 에탄올 발효능)

  • Kang, MinKyung;Kim, Minah;Yu, Bowan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.709-715
    • /
    • 2013
  • The waste from beer fermentation broth (WBFB) has been found an excellent and inexpensive resource for bioethanol production. We tried to evaluate the saccharification and fermentation capabilities of WBFB to confirm its effectiveness for bioethanol production. The saccharification potentials of the WBFB were evaluated at various temperatures (30, 40, 50, 60 and $70^{\circ}C$). It was found that the saccharification capabilities increased with temperature and highest reached maximum at $60^{\circ}C$ and $70^{\circ}C$ after 4h. Ethanol production from a mixture of WBFB and chemically defined media (CDM) without addition of any microbial species confirmed the fermentation capabilities of WBFB. Simultaneous saccharification and fermentation were performed using WBFB, starch solution and CDM as culturing media. The maximum yield of bioethanol production was obtained at $30^{\circ}C$. The saccharifying enzymes and the yeast cells present in WBFB were essential factors for the production of bioethanol from WBFB without any additional enzymes or microbial cells.

Kinetic Modeling of the Enzymatic Hydrolysis of $\alpha$-Cellulose at High Sugar Concentration (순수 섬유소에 대한 고농도 당화공정의 동력학적 모사)

  • 오경근;정용섭홍석인
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • For the effective ethanol fermentation, the high concentration of sugar as the substrate of microbial fermentation is required. The most important reason in the inefficient hydrolysis; the easy deactivation of enzyme by temperature or shear stress and the severe inhibition effects of its products. In our work, we comprehended the kinetic characteristics of cellulose and ${\beta}$-glucosidase in the progress of hydrolysis, and observed the potential inhibitory effects of the hydrolyzed products and the deactivation of enzymes. We also tried to present the kinetic model of enzymatic hydrolysis of cellulose, which is applicable to process at the high concentration of sugar. Cellulase and ,${\beta}$-glucosidase exhibit diverse kinetic behaviors. At a level of only 5g/$\ell$ of glucose, the ${\beta}$-glucosidase activity was reduced by more than 70%. This result means that ${\beta}$-glucosldase was the most severely inhibited by glucose. Also at l0g/$\ell$ of cellobiose, the cellulose lost approximately 70% of its activity. ${\beta}$-glucosldase was more sensitive to deactivation than cellulose by about 1.6 times. The comprehensive kinetic model in the range of confidence was obtained and the agreement between the model prediction and the experimental data was reasonably good, testifying to the validity of the model equations used and the associated parameters.

  • PDF

Saccharification of Fagopyrum esculentum by Amylase Treatments increases Phenolic Compound Content and Antioxidant Activity (아밀라아제 처리에 의한 메밀의 당화가 페놀화합물 함량과 항산화 활성의 증가에 미치는 영향)

  • Phouthaxay, Phonesavanh;Kim, Kyoung Kon;Lim, Jae Cheon;Lee, Koo Yeon;Park, Cheol Ho;Choe, Myeon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.1
    • /
    • pp.139-145
    • /
    • 2015
  • This study evaluated the functional characteristics of saccharified buckwheat (Fagopyrum esculentum) following ${\alpha}$-amylase, ${\beta}$-amylase or glucoamylase treatment based on changes in soluble solid contents, rutin and quercetin contents, total polyphenols and DPPH radical scavenging activity. The results showed that the amylase treatments significantly influenced the saccharification time. Additionally, total polyphenol, rutin, and quercetin contents increased during the saccharification process; increase in phenolic compounds induced antioxidant activity. The present study demonstrated that buckwheat has a higher amount of functional compounds and higher antioxidant activity after saccharification. These results show that buckwheat saccharification can be used to increase antioxidant capacity and functional value for applications in functional food industries.

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

Semibatch Ethanol Production from Starch by Simultaneous Saccharification and Fermentation Using Cell Recycle (균체재순환 및 동시당화발효에 의한 전분으로 부터의 반회분식 에탄올 발효)

  • 김철호;유연우김철이상기
    • KSBB Journal
    • /
    • v.5 no.4
    • /
    • pp.335-339
    • /
    • 1990
  • In order to develop economic processes for ethanol production from starch, a simultaneous saccharification and fermentation(SSF) process using Zymomonas mobilis and amyloglucosidase (AMG) was studied in semibatch modes using cell recycle. The cell recycle was carried out by adopting two different methods; microfiltration and settling. The cell recycle using microfiltration revealed higher productivity(5.4 g/l/h) than that using a settler(4.3 g/l/h). Taking the large-scale ethanol fermentation into account, the semibatch process using microfiltration system appeared most promising among others with respect to ethanol productivity, feasibility of scale-up and simplification of operation.

  • PDF

Bioethanol Production from Popping Pretreated Switchgrass (팝핑전처리한 스위치그라스로부터 바이오에탄올 생산)

  • Kim, Hyun-Joo;Bae, Hyeun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2012
  • Switchgrass was selected as a promising biomass resource for bioethanol production through popping pretreatment, enzymatic saccharification and fermentation using commercial cellulase and xylanase, and fermenting yeast. The reducing sugar yields of popping pretreated switchgrass after enzymatic saccharification were above 95% and the glucose in thesaccharificaiton solution to ethanol conversion rate after fermentation with $Saccharomyces$ $cerevisiae$ was reached to 89.6%. Chemical compositions after popping pretreatment developed in our laboratory were 40.8% glucose and 20.3% xylose, with much of glucose remaining and only xylose decreased to 4.75%. This means that the hemicelluloses area broke off during popping pretreatment. FE-SEMexamination of substrate particles after popping pretreatment was showed fiber separation, and tearing and presence of numerous micro pores. These changes help explain, enhanced enzymatic penetration resulting in improved hydrolysis of switchgrass particles after popping pretreatment.

Bioethanol production using batch reactor from foodwastes (회분식 반응기에서 음식물쓰레기를 이용한 바이오에탄올 생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Park, Hong-Sun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.609-614
    • /
    • 2010
  • In the present study, bioethanol was produced using batch style reactor from food wastes which has organic characteristics. Pretreatment was required to reduce its particle size and produce fermentable sugar. Two different enzymes such as carbohydrase and gulcoamylase were tested for saccharification of food waste. The efficiency of carbohydrase saccharification (0.63 g/g-TS) has shown higher than glucoamylase saccharification(0.42 g/g-TS). Saccharomyces cerevisiae produced bioethanol via separate hydrolysis & fermentation (SHF) method and simultaneous saccharification fermentation (SSF) method. The production amount of bioethanol was 0.27 g/$L{\cdot}hr$ for SHF and 0.44 g/$L{\cdot}hr$ for SSF.

Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation (알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산)

  • Shin, Soo-Jeong;Cho, Dae Haeng;Han, Sim-Hee;Kim, Young Hwan;Cho, Nam-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • Yellow poplar was selected a promising biomass resources for bio-ethanol production through alkali prehydrolysis, enzymatic saccharification and fermentation using commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 mixtures) and fermenting yeast. In alkali prehydrolysis, 51.1% of Yellow poplar biomass remained as residues, which chemical compositions were 82.2% of cellulose, 17.6% of xylan and 2.0% of lignin. In alkali prehydrolysis process, 96.9% of cellulose, 38.0% of xylan and 5.7% of lignin were remained. Enzymatic saccharification by commercial cellulases led to 87.0% of cellulose to glucose and 87.2% of xylan to xylose conversion. Produced glucose and xylose were fermented with fermenting yeast (Saccharomycess cerevisiae), which resulted in selective fermentation of glucose only to bio-ethanol. Residual monosaccharides after fermentation were consisted to 0.4-1.4% of glucose and 92.1-99.5% of xylose. Ethanol concentration was highest for 24 h fermentation as 57.2 g/L, but gradually decreased to 56.2 g/L for 48 h fermentation and 54.3 g/L for 72 h fermentation, due to the ethanol consumption by fermenting yeast.