• Title/Summary/Keyword: 회피거리

Search Result 237, Processing Time 0.028 seconds

Moving Obstacle Avoidance for Sensor-Based Mobile Robot using Fuzzy Logic (퍼지 논리를 이용한 센서기반 이동로봇의 이동장애물 회피)

  • Woo, Sang-Yong;Ahn, Hyun-Sik;Oh, Ha-Ryoung;Seong, Yeong-Rak;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.44-46
    • /
    • 2004
  • 본 논문에서는 이동로봇이 임의의 선행물체를 추종할 때 진행 경로상에 이동장애물이 진입하는 경우 이 장애물을 효과적으로 회피할 수 있는 방법을 제시한다 초음파 센서를 이용하여 이동로봇의 진행경로에 진입하는 이동장애물에 대한 거리 정보와 방향각(Heading Angle)을 구할 수 있다. 이동로봇의 본체 주위에 배치된 16개의 초음파 센서를 이용하여 이동로봇의 전면, 후면 및 측면의 데이터를 얻을 수 있으며 이 정보를 퍼지제어기의 입력으로 사용한다 퍼지제어기는 이러한 입력정보와 제안된 규칙 베이스를 이용하여 이동로봇의 진행방향과 속도를 결정한다. 본 논문에서 제안한 퍼지제어기를 이용한 시뮬레이션을 통해 이동장애물에 대한 효과적인 충돌회피가 수행됨을 보인다.

  • PDF

Autonomous Navigation Power Wheelchair Using Distance Measurement Sensors and Fuzzy Control (거리측정 센서 스캐닝과 퍼지 제어를 이용한 전동 휠체어 자율주행 시스템)

  • Kim, Kuk-Se;Yang, Sang-Gi;Rasheed, M. Tahir;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.329-336
    • /
    • 2008
  • Nowadays with advancement in technology and aging society, the number of disabled citizens is increasing. The disabled citizens always need a caretaker for daily life routines especially for mobility. In future, the need is considered to increase more. To reduce the burden from the disabled, various devices for healthcare are introduced using computer technology. The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path.

  • PDF

Path Planning and Obstacle Avoidance for Mobile Robot with Vision System Using Fuzzy Rules (비전과 퍼지 규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;채양범;이원창;강근택
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.470-476
    • /
    • 2001
  • This paper presents a new algorithm of path planning and obstacle avoidance for autonomous mobile robots with vision system that is working in unknown environments. Distance variation technique is used in path planning to approach the target and avoid obstacles in work space as well . In this approach, the Sobel operator is employed to detect edges of obstacles and the distances between the mobile robot and the obstacles are measured. Fuzzy rules are used for trajectory planning and obstacle avoidance to improve the autonomy of mobile robots. It is shown by computer simulation that the proposed algorithm is superior to the vector field approach which sometimes traps the mobile robot into some local obstacles. An autonomous mobile robot with single vision is developed for experiments. We also show that the developed mobile robot with the proposed algorithm is navigating very well in complex unknown environments.

  • PDF

Navigation of Autonomous Mobile Robot using Fuzzy Neural Network (퍼지-뉴럴 네트워크를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This paper proposes a hierarchically structured navigation algorithm for autonomous mobile robot under unknown environment based on fuzzy-neal network. The proposed algorithm consists of two basic layers as follows. The lower layer consists of two parts such as fuzzy algorithm for goal approach and fuzzy-neural algorithm for obstacle avoidance. The upper layer which is basically fuzzy algorithm adjusts the magnitude of the weighting factor depending on the environmental situation. The proposed algorithm provides an efficient method to escape local mimimum points as shown in the simulation result. Most simulation results show that this algorithm is very effective for autonomous mobile robots' traveling in unknown field.

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.

A Study on the Validation of the Collision Avoidance System for Small-size Vessels (소형 선박의 충돌 회피 시스템 검증에 관한 연구)

  • Pyun, Jang-Hoon;Ryu, Sung-Gon;Kim, In-Seob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1023-1030
    • /
    • 2021
  • Korea Maritime Safety Tribunal (KMST) statistics released in of 2019 indicated that most collision accidents involving small-size vessels with less than 20 gross-tonnage occur mainly due to operational carelessness, such as forward-looking negligence and unskilled vessel control. As an effective remedy, training and education for vessel operators are being strengthened to prevent accidents. However, collision accidents are increasing, and technical measures are continuously developed to reduce accidents caused by human factors. In this study, an avoidance algorithm and prototype of terminal-controller against collision between two nearby vessels was developed for implementation on relative navigation control by adopting WAVE telecommunication technology. Moreover, several sea trial tests were performed to verify the collision avoidance algorithm and control system using two fishing vessels for dif erent scenarios.

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.

Distance profile histogram과 뉴럴네트워크를 이용한 이동로보트의 주행제어

  • 신무승;김현태;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1153-1156
    • /
    • 1996
  • 본 논문은 새로운 지역 경로 계획 알고리즘으로 DPH(Distance Profile Histogram)방법과 뉴럴네트워크를 사용한 주행 방법을 제안한다. DPH방법은 격자형 환경 모델을 기반으로 장애물의 존재 유무와 거리정보와 같은 장애물의 기하학적 배치정보를 사용하게 된다. 또한 긴 장애물이나 막힘상황(Dead end)과 같이 지역 경로 계획만으로는 회피하기 어려운 상황에서는 뉴럴네트워크에 의해 학습된 정보에 의해 주행하는 방법을 사용했다.

  • PDF

Distance measurement systems implemented for ASV (ASV를 위한 차량탑재용 거리계측기술)

  • 장경영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.45-54
    • /
    • 1996
  • 최근 자동차의 안전성을 한층 강조하는 ASV 개념의 도입이 보편화되면서 이를 구현하기 위한 여러가지 기능들이 고안되어 지고 있는데, 그 중에서도 추돌경보 및 회피기능, 야간보행자 검지기능, 후측방 장애물검지 기능, 차간거리 일정유지 제어기능 등에 있어서 공통적으로 주행중 거리계측이 필요하다. 본고에서는 ASV기술에서 필요하고 또한 중요한 핵심기술인 차량탑재용 거리계측기술에 대하여 현재 실용화되어 있거나 실용가능성이 있는 기술을 수단과 방식으로 나누어 각각의 원리와 특징에 대해 소개하였다. 수단으로서는 초음파, 레이저, 밀리파를 제시하였으며, 방식으로는 펄스시간차방식, 진폭변조 및 위상복조방식, 주파수변조방식을 소개하였다. 또한 비젼은 이들과는 계측원리와 신호처리가 매우 상이하고 본특집에서 별도로 상세히 소개될 것이기 때문에 간략히 소개하였다.

  • PDF