• Title/Summary/Keyword: 회절에 의한 소음감쇠

Search Result 8, Processing Time 0.025 seconds

교통소음 저감을 위한 방음벽상단 소음저감장치

  • 김영찬;장강석
    • Journal of KSNVE
    • /
    • v.12 no.6
    • /
    • pp.414-422
    • /
    • 2002
  • 도로와 인접지역 사이에 장애물이 없으면, 소리는 소음원에서 수음영역으로 직접적으로 전달된다. 그러나 소음원과 수음영역 사이에 장애물이 있는 경우에는 소음원에서 발생한 소음은 장애물의 상단을 회절하여 수음영역으로 도달하는 회절경로와 장애물 자체를 통과하여 전달되는 투과경로, 장애물에 의한 반사경로 등 여러 전파 경로로 나뉘어 전달된다. 그러나 일반적인 방음벽은 벽 재료의 투과손실을 크게 하므로 회절감쇠 이외의 영향은 거의 없게 설계된다. 따라서 방음벽에 의한 소음 감쇠량은 방음벽의 높이(회절음의 영향)에 의해 결정되는 회절감쇠가 대부분을 차지하게 된다.(중략)

방음벽의 원리

  • 임병덕
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.192-198
    • /
    • 1993
  • 옥외에서 발생하는 소음은 음원과 수음점 사이의 시선을 차단하는 장애물을 설치하는 방법이외에는 달리 방도가 없는 경우가 많다. 빛과 마찬가지로 소리도 시선이 차단되면 소리의 그늘이 지는데 빛의 경우보다는 상당히 강한 음장이 이 그늘에 존재한다. 그늘 영역에서의 음장은 소리의 회절현상에 기인하는 것으로서 회절음장은 곧 방음벽의 차음효과를 좌우한다. 방음벽의 차음효과는 잉여감쇠(excessive attenuation)로 표시되는데 잉여감쇠에 영향을 주는 인자는 방음벽의 기하학적 조건, 음향학적 성질, 설치지면, 주변지형, 풍속 및 온도분포와 같은 기상조건, 음원의 특성 등 다양하지만 가장 기본적인 인자는 기하학적인 조건이다. 본고는 방음벽의 원리에 국한하여 살펴보기 위해 기술된 것이므로 주로 판 또는 쐐기 형태의 물체에 의한 회절현상을 취급하였다.

  • PDF

Development of Noise Prediction Program in Construction Sites (건설 공사장 간이 소음 예측 프로그램 개발)

  • Kim, Ha-Geun;Joo, Si-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1157-1161
    • /
    • 2007
  • A construction noise is the main reason for people's petition among the pollution. The purpose of this study is to develop the noise prediction program to see the level of the noise on the construction site more accurately. For this purpose, the database of the power level on the various equipments was made. The noise reduction by distance and the noise reduction by diffraction of barrier were mainly considered and calculated. The simple noise prediction program will provide the information about proper height and length of the potable barrier which satisfies noise criteria of the construction sites from a construction planning stage. To investigate the reliability of this program, the predicted data was compared with the measured data. An average of difference between measured data and predicted data is 1.3 dB(A) and a coefficient of correlation is about 0.95.

  • PDF

Development of the Noise Prediction Program to apply in Construction Site (현장 적용성을 향상시킨 건설현장 소음예측프로그램 개발)

  • Oh, Jin-Kyun;Park, Hye-Na;Sohn, Jang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.302-309
    • /
    • 2009
  • Nowadays, the construction sites are growing in city every year, so complaints for construction noise have increased more and more. To analyze this noise scientifically, construction noise prediction program was developed in 1998 and 2005 but it is too difficult to apply program in field because there is few soundproof facilities and it can't understand the coordinate system and so on. The aim of this study is to develop noise prediction program to apply in construction sites. For this, the problems of existing program was analyzed and survey was performed to get requestion of field overseer and upgraded program. To get reliability of program, it was compared with sound measurement value in field. As a result, construction sound prediction program have various soundproof facilities data than existing program. It can also analyze multi receiver point at the same time for several construction machinery. Most of all, it is more powerful to set receiver or source in the axis of X, Y, Z. so program user can make use of it easily. An average of difference is -0.9$\sim$1.8dB.

  • PDF

Development of the Noise Prediction Program to apply in Construction Site (현장 적용성을 향상시킨 건설현장 소음예측프로그램 개발)

  • Oh, Jin-Kyun;Park, Hye-Na;Sohn, Jang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.409-417
    • /
    • 2009
  • Nowadays, the construction sites are growing in city every year, so complaints for construction noise have increased more and more. To analyze this noise scientifically, construction noise prediction program was developed in 1998 and 2005 but it is too difficult to apply program in field because there is few soundproof facilities and it can't understand the coordinate system and so on. The aim of this study is to develop noise prediction program to apply in construction sites. For this, the problems of existing program was analyzed and survey was performed to get requestion of field overseer and upgraded program. To get reliability of program, it was compared with sound measurement value in field. As a result, construction sound prediction program have various soundproof facilities data than existing program. It can also analyze multi receiver point at the same time for several construction machinery. Most of all, it is more powerful to set receiver or source in the axis of X, Y, Z. so program user can make use of it easily. An average of difference is -0.9~1.8 dB.

Development of Noise Prediction Program in Construction Sites (건설 공사장 간이 소음 예측 프로그램 개발)

  • Kim, Ha-Geun;Joo, Si-Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1021-1027
    • /
    • 2007
  • A construction noise is the main reason for people's petition among the pollution. The purpose of this study is to develop the noise prediction program to see the level of the noise on the construction site more accurately. For this purpose, the database of the power level on the various equipments was made. The noise reduction by distance and the noise reduction by diffraction of barrier were mainly considered and calculated. The simple noise prediction program will provide the information about proper height and length of the potable barrier which satisfies noise criteria of the construction sites from a construction planning stage. To investigate the reliability of this program, the predicted data was compared with the measured data. An average of difference between measured data and predicted data is $0.1{\sim}2.8\;dB(A)$ and a coefficient of correlation is about $0.85{\sim}0.95$.

Noise Map Analysis for the Design of Noise Barrier at School Site (학교부지의 방음벽 설계를 위한 소음지도 해석)

  • Yun, Junho;Kim, Wonjin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.232-238
    • /
    • 2012
  • In this study, the noise mapping simulation is executed to design an effective barrier reducing noise levels of a school site. The geographical features of the ambient site and the school buildings are modelled in detail in order to consider sound propagation, deflection, and absorption phenomena etc. The main sound source, sound power level of expressway, is estimated on the basis of measured noise levels at several points of the site. The noise mapping simulation is performed by using ENPro, environmental noise prediction program based on ISO 9613 to analysis the effectiveness of noise barrier. Consequently, the noise barrier is designed to meet an environmental noise standard and satisfy low cost and safety conditions.

A study on the standard for determining airborne sound insulation performance of sound barrier panels (방음판의 음향투과손실 측정규격에 관한 연구)

  • Oh, Yang Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.302-311
    • /
    • 2022
  • Sound barrier walls are one of the most effective alternatives for reducing environmental noise on roads and railways in the city center. The insertion loss of the sound barrier against road traffic noise is the sum of the sound transmission loss, sound absorption loss, and sound energy reduction due to the diffraction attenuation of the sound barrier. The sound transmission loss of the sound barrier is one of the important factors that determine the insertion loss of the sound barrier and is a basic indicator that determines the performance of the sound barrier. Nevertheless, there is not a separate standard in Korea for measuring the acoustic transmission loss of sound barrier panels. There are only a few conditions in KS F 4770 series that stipulates on the general material of sound barrier panels. This thesis examines the necessity of the acoustic transmission loss measurement and evaluation standards of sound barrier walls, and seeks a measurement method in a free sound field (anechoic chamber) sound receiving room considering the characteristics of sound barrier walls installed in external spaces, unlike indoor building materials. In addition, a single number evaluation method using a reference spectrum was proposed so that the sound insulation effect according to various installation places such as roadside or railroad side can be easily displayed.