• Title/Summary/Keyword: 회전 우주

Search Result 439, Processing Time 0.024 seconds

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

Rotordynamic Analysis of a High Thrust Liquid Rocket Engine Turbopump (고추력 액체 로켓 엔진용 터보펌프의 회전체동역학 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.688-694
    • /
    • 2008
  • A rotordynamic analysis is performed for a high thrust class liquid rocket engine turbopump considering the dynamic characteristics of ball bearings and pump noncontact seals. Complex eigenvalue problems are solved to predict the rotating natural frequencies and damping ratios as a function of rotating speeds. Synchronous rotor mass unbalance response and time transient response analyses are also performed to figure out the rotor critical speed and the onset speed of instability. From the numerical analysis, it is found that the rear bearing stiffness is most important parameter for the critical speed and instability because the 1st mode is turbine side shaft bending mode. The pump seal effect on the critical speed is enlarged as the rear bearing stiffness decreases and the front bearing stiffness increases.

The Aerodynamic Origin of Abrupt Thrust Generation in Insect Flight (Part 2: Study on Primary Aerodynamic Parameters) (곤충비행에서 갑작스러운 추력발생의 공기 역학적 원인 Part 2: 공기역학적 주요 변수에 대한 연구)

  • Lee, Jung-Sang;Kim, Jin-Ho;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • Numerical results from the "figure-of-eight" motion of Phormia-Regina in Part 1 indicate that vortical structure and vortex dynamics do play a critical role in lift and thrust generation. The aerodynamic force generation of insects' wing could be governed by aerodynamic parameters such as Reynolds number; kinematic parameters such as frequency, amplitude, and component of the figure of eight motion; and morphological parameters such as wing shape and the number of wing. In the present work, the effects of Reynolds number, reduced frequency and motion component are investigated in detail to clarify aerodynamic characteristics of insect wing. Through numerical results and their physical interpretation, the mechanism of aerodynamic force generation is presented more clearly. Rotation turns out to be the most important component in thrust generation and subsequent counterclockwise rotational circulation is closely related with thrust generation.

Estimation and Verification of Commercial Stability Augmentation System Logic for Small UAV (소형무인기 상용 안정성 증대 장치 로직 추정과 검증)

  • Ko, Dong-hyeon;Rahimy, Mohamad;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.821-829
    • /
    • 2019
  • Because rotorcraft is unstable, it needs a stability system such as flybar. Recently, sensor technology has been developed, it uses a stability augmentation system to improve stability instead of flybar. To use of these rotorcraft which include stability augmentations system for unmanned system, flight control computer, include stability augmentations system function, must be required. In this paper, a reverse-engineering method of estimating Algorithm of Commercial Stability Augmentation System is proposed, the result is applied in the flight computer to make an unmanned rotorcraft system. Finally using a validated algorithm, it is possible to establish a system of unmanned automatic rotorcraft system.

Design of the Vision Based Head Tracker Using Area of Artificial Mark (인공표식의 면적을 이용하는 영상 기반 헤드 트랙커 설계)

  • 김종훈;이대우;조겸래
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.63-70
    • /
    • 2006
  • This paper describes research of using area of artificial mark on vision based head tracker system. A head tracker system consists of the translational and rotational motions which are detected by web camera. Results of the motion are taken from image processing and neural network. Because of the characteristics of cockpit, the specific color on the helmet is tracked for translational motion. And rotational motion is tracked via neural network. Ratio of two different colored area on the helmet is used as input of network. Neural network algorithms used, such as back-propagation and RBFN (Radial Basis Function Network). Both back-propagation using a characteristic of feedback and RBFN using a characteristic of statistics have a good performances for the tracking of nonlinear system such as a head motion. Finally, this paper analyzes and compares with tracking performance.

Roll Angle Estimation of a Rolling Airframe Using a GPS and a Roll Rate Gyro (단일 GPS와 롤각속도계를 이용한 롤 회전 비행체의 롤자세각 추정)

  • Hong, Ju-Hyeon;Kim, Dusik;Ryoo, Chang-Kyung;Lee, Chang-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • In this paper, a roll angle estimation method of a rolling airframe using a low grade GPS and a roll rate gyro is proposed. The strength of the received signal of the GPS antenna attached on the rolling airframe is maximized when the GPS satellite is placed on the plane determined by the x-axis of the rolling airframe and the GPS antenna axis. Under the assumption that the x-axis of the rolling airframe is coincident with its velocity vector, the roll angle of the rolling airframe is calculated from the relative position vector of the satellite to the GPS when the GPS signal strength becomes maximum. The Kalman filter combined with a roll rate gyro is introduced to increase the determination accuracy of the roll angle. The performance of the proposed method is verified via 6-DOF simulations.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.

Assessment of Crashworthiness Performance for Fuel Tank of Rotorcraft (회전익 항공기용 연료탱크 내추락 성능 시험평가)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Hue, Jang-Wook;Shin, Dong-Woo;Jun, Pil-Sun;Jung, Tae-Kyung;Ha, Byung-Kun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.806-812
    • /
    • 2010
  • Fuel tanks for rotorcraft have a great influence on the survivability of crews. The philosophy of crashworthy rotorcraft design evolved from the long term effort of the US Army. US army established MIL-DTL-27422D for specifying detail requirements related to crash resistant fuel tank especially for military rotorcraft to prevent post crash fire which is the greatest threat to life in rotorcraft crash. Crashworthiness of the rotorcraft fuel tank could be guaranteed through the crash impact tests which are specified in the MIL-DTL-27422D. Fuel tanks for Korea Helicopter Program have been developed and tested according to MIL-DTL-27422D with minor modifications of flexible fittings. The present study shows some results of the mandatory crash impact tests of the fuel tanks to verify their performances.

An Exploratory Study on the Speed Limit of Compound Gyroplane(2) : Speed and Wing Sizing (복합 자이로플레인의 한계 속도에 대한 탐색연구(2) : 속도 및 날개 사이징)

  • Shin, Byung-Joon;Kim, HakYoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.978-983
    • /
    • 2015
  • A study on the speed limit and sizing of auxiliary fixed-wing of compound gyroplane was performed. The performance of the plane that uses the same rotor system and power of BO-105 helicopter was compared with that of BO-105 helicopter. The wing area which is used to compensate in lift, was calculated considering the aerodynamic characteristics and lift sharing ratio of the rotor. Achievable flight speeds were observed for two types of fuselage; BO-105 and streamlined bodies. The study showed that the autorotating rotor can share 1/2 of lift at high speed and the parasite power of compound gyroplane having streamlined body and small wing can be minimized, accordingly it can fly faster than helicopter with airspeed more than twice.

Preliminary Sizing of a High Temperature Superconducting Motor for the Application to Electrically Propelled Aircraft (전기 추진 항공기에 적용하기 위한 고온초전도 모터의 초기 사이징)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.789-799
    • /
    • 2012
  • In this research, a high temperature superconducting(HTS) motor is designed which is adequate for an electrical aircraft by generating high power density and the potentiality of its application to an aircraft is studied. The designed motor is based on YBCO plates, HTS coils composed of Bi-2223, and ironless air cooled resistive armature. The HTS motor is designed to generate power equivalent to O-360 engine with 180HP at 2700RPM which is used for Cessna and equivalent to CFM56 engine with 18000HP at 5000RPM which is used for B-737. Also, power densities of HTS motors are compared with power densities of aircraft engines so that we can estimate the potentiality of the HTS motor as an aircraft engine.