• Title/Summary/Keyword: 회전 시험

Search Result 862, Processing Time 0.022 seconds

A Study on the Applicability of a Cumulative Rebound Angle for the Assessment of Compressive Strength of Construction Materials Nondestructively (건설재료의 비파괴 압축강도산정을 위한 누적 반발각의 적용성에 관한 연구)

  • Son, Moorak;Jang, Byungsik;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • This paper is to grasp the applicability of a cumulative rebound angle measured from the rebound action generated after impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Five types of construction materials, which are soil cement, cement paste, wood (pine tree), and two types of rock (shale and granite), were tested and both peak rebound angle and cumulative rebound angle were measured for each material by using a high-speed camera. The measured angles were compared with the directly measured compressive strength for each material. The comparison showed that for materials such as cement and rock the cumulative rebound angle, which reflects energy dissipation, rather than the peak rebound angle is more appropriate indicator for assessing the compressive strength of a material, but for a construction material such as wood which has a high toughness the magnitude of rebound is not an indicator to assess the compressive strength of a material.

Effect of the Compatibilizer on Physical Properties of Polypropylene (PP)/Bamboo Fiber (BF) Composites (폴리프로필렌/대나무 섬유 복합체의 물성에 대한 상용화제의 영향)

  • Lee, Jong Won;Ku, Sun Gyo;Lee, Beom Hee;Lee, Ki-Woong;Kim, Cheol Woo;Kim, Ki Sung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.615-620
    • /
    • 2015
  • Polypropylene (PP)/bamboo fiber (BF) composites were fabricated by twin screw extruder in order to investigate effects of the compatibilizer on physical properties of PP/BF composites. The content of BF changed from 10 to 25 wt% and that of the compatibilizer was fixed at 3 wt%. Maleic anhydride grafted PP (PP-g-MAH) was used to increase the compatibility between PP and BF as a compatibilizer. Chemical structures of the composites were confirmed by the existence of carbonyl group (C=O) stretching peak at $1,700cm^{-1}$ in FT-IR spectrum. Considering the degradation and mechanical properties, the optimum extrusion conditions were selected to be $210^{\circ}C$ and 100 rpm, respectively. There was no distinct changes in melting temperature of the composites, but the crystallization temperature increased by $10-20^{\circ}C$ owing to the heterogeneous nuclei of BF. It was checked that the optimum BF content was in the range of 15-20 wt% from the results of tensile and flexural properties of the composites. The effect of the compatibilizer on mechanical properties was confirmed by SEM images of fractured surface and contact angles.

Changes in the pathogenicity of Naegleria fowleri by serial brain passage in mice (자유생활아메바 Naegleria fowleri의 계대감염에 의한 병원성의 변화에 관한 연구)

  • 이득기;임경일
    • Parasites, Hosts and Diseases
    • /
    • v.21 no.2
    • /
    • pp.234-240
    • /
    • 1983
  • The pathogenicity of free-living amoeba, Waegleria fcwleri, is influenced according to the strain, cultural condition and host (Culbertson et at., 1968; Carter, 1970; Wong et at., 1975), Phillips (1973) demonstrated that Entamoeba histolytica became avirulent after more than 2 year maintenance in axonic culture in vitro. This study was carried out to compare the difference in pathogenicity between two strains of N. fowleri, one of a prolonged maintenance in arsenic medium and the other one obtained by serial brain passage in mice. The 0 strain was that N. fowleri had cultivated axenically more than 7 years in CGVS medium. The 2-1 strain was obtained from the brain of mouse inoculated intranasally with a strain, which was from the mouse brain infected with 0 strain, and cultured for 15 weeks until the beginning of this experiment. White male mice weighing 18-22 g were used. Mice were anesthetized by an intraperitoneal injection of about 1 mg secobarbital, and inoculated intranasally with $10{\times}$10^4 live N. fowleri trophoBoites in a $5{\;}{\mu}l$ cell suspension. Sluggish behaviour, nervousness, rotation and leg paralysis were developed earlier and more frequently in the 2-1 experimental group than the control 0 group. Pathological changes such as inflammatory and necrotic lesion were observed in the olfactory and anterior portion of brain, and these changes were more extensive in the 2-1 group. The edematous and inflammatory changes in lung were demonstrated in mice died after 13th day post-inoculation. The experimental mice of 2-1 group began to die suddenly from 7th day post-inoculation, and the survival time in 2-1 group mice was shorter than 0 group mice. The typical primary amoebic meningoencephalitis was developed in the mice inoculated intranasally with N. fowleri. The prolonged maintenance of N. fowleri amoebae in axonic CGVS medium was observed to have lost their original pathogenicity for mice, but their pathogenicity was restored by serial brain passage in mice.

  • PDF

Study on the Current Horizontal Stress Characteristics of the Tertiary Rock Formations in the Pohang Basin by Integrated Analysis with In-situ Rock Stress Measurement and Borehole Scanning Data Set (현장 초기응력 측정과 시추공 이미지 스캐닝 자료의 통합 분석을 통한 포항분지 제 3기 지층 내 수평응력 분포 특성 연구)

  • Bae, SeongHo;Jeon, Seokwon;Kim, Jangsoon;Park, Kwongyu
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.304-315
    • /
    • 2016
  • In this study, the current horizontal stress characteristics of the Tertiary rock formations in the Pohang Basin are investigated on the basis of the in-situ rock stress measurements at depths from 75 m to 716 m of the 3 test boreholes in the Doumsan area, Pohang. The deep hydraulic fracturing stress measurement results indicated that the horizontal stress components in the test site appear far lower than the average ones by the linear fit for the data set measured from the other domestic sites. But, borehole scanning revealed clearly that lots of small and large scale borehole failures occurred due to the low strength characteristics of the existing rocks. To obtain more accurate and overall information on the horizontal stress direction, the integrated analysis combining the hydraulic fracturing stress measurement and borehole scanning data set were additionally carried out. The analysis results showed that in the upper sedimentary and the lower volcanic rock formation, the dominant orientations of the current maximum horizontal stress components were appeared in the range of $80^{\circ}{\sim}100^{\circ}$ (N80E~N80W) and $120^{\circ}{\sim}140^{\circ}$ (N60W~N40W), respectively. From this study result it was found that the maximum horizontal stress directions have a tendency to rotate in a clockwise direction as the rock formation changes with depth in the test site.

A Study on the Manufacturing, Mechanical Properties,Abrasion Resistance, and Slow Crack Growth Resistance of the Recycled Polyethylene/Fly Ash Composites (재생 폴리에틸렌/비산회 분말 충전 복합체 제조와 기계적 물성, 내마모성 및 저속균열성장 저항성에 관한 연구)

  • Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • The virgin and recycled polyethylene composites with various ratio of fly ash were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of fly ash from power plant and post-consumed polyethylene. Fly ash were blended with virgin HDPE and recycled polyethylene at the weight fraction of 0 to 40 wt.%. Mechanical properties such as yield strength, abrasion resistance, and slow crack resistance were measured with ISO and ASTM standards. The experimental results for the various composites showed that the elongation at break and the yield stress of the composites decreased with increasing fly ash contents. Generally, the abrasion resistance of PEs decreased with increasing sandpaper grits but the abrasion resistance of the composites increased with fly ash content at finer abrasive surface. The slow crack growth resistance of virgin HDPE, recycled JRPE and the JRPE composite showed higher slow crack growth resistance up to 50% of load at notch depth of 20% and 30%, but KRPE and the KRPE composite showed much lower resistance than virgin HDPE, JRPE and the JRPE composite. Time to break, measured with NCLS test method, of all PEs and the composites satisfies the regulation of Korean Industrial Specification for sewer pipe and support application.

A Theoretical Calculation for Angular Dependence of X-ray Beams on Extremity Phantom (말단팬텀에서 X-선 빔의 방향의존성에 관한 이론적 계산)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Kim, Jang-Lyul;Kim, Kwang-Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.263-271
    • /
    • 1996
  • The ANSI N13.32 recommends that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. Gamma dose equivalent conversion and angular dependence factors were calculated by using MCNP code for the case of ANSI N13.32 extremity phantoms(finger and arm) at the depth of $7mg/cm^2$. Those extremity dosimeters were assumed to be irradiated from both monoenergitic photons and ISO X-ray narrow beams. These calculated gamma dose equivalent conversion and angular dependence factors were compared to B. Grosswendt's result calculated by using X-ray beams. The result showed that the dose equivalent conversion factors of this study agreed well with that of B. Grosswendt for all energies within 2% except 7% in the case of the low energies. In the case of angular dependence factors comparison, they agreed within 3%. It was shown that angular dependence factors of the finger phantom decreased as the horizontal angle of the phantom increased for the ISO X-ray beams less than 60keV. For the higher energy X-ray beams range they decreased slightly around 40 degree, but then increased from this energy to 90 degree.

  • PDF

Development of Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇 개발)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Oriental melon (Cucumis melo var. makuwa) should be cultivated on the soil and be harvested. It is difficult to find because it is covered with leaves, and furthermore, it is very hard to grip it due to its climbing stems. This study developed and tested oriental melon harvesting robots such as an end-effector, manipulator and identification device. The end effector is divided into a gripper for harvest and a cutter for stems. In addition, it was designed to control the gripping and cutting forces so that the gripper could move four fingers at the same time and the cutter could move back and forth. The manipulator was designed to realize a 4-axis manipulator structure to combine orthogonal coordinate-type and shuttle-type manipulators with L-R type model to rotate based on the central axis. With regard to the identification device, oriental melon was identified using the primary identification global view camera device and secondary identification local view camera device and selected in the prediction of the sugar content or maturity. As a result of the performance test using this device, the average harvest time was 18.2 sec/ea, average pick-up rate was 91.4%, average damage rate was 8.2% and average sorting rate was 72.6%.

Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave (유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지)

  • Joo, Young-Sang;Lee, Hyeong-Yeon;Kim, Jong-Bum;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • The thermal ratcheting deformation at the reactor baffle and upper internal structure of the liquid metal reactor (LMR) can occur due to movement of the hot sodium free surface. In in-service inspection of reactor internals of LMR, a new inspection technique should be developed for the detection of the thermal ratcheting damage. In this study, an inspection technique using ultrasonic guided wave is proposed for the detection of the thermal ratcheting damage of cylindrical vessels. A 316L stainless steel cylindrical shell specimen has been prepared. The thermal ratchet structural tests were cyclically performed by heat-up up to $550^{\circ}C$ with steep temperature gradients along the axial direction after cool-down by cooling water. Ultrasonic guided wave propagation has been characterized by analysis of dispersion curve of the stainless steel plate. The zero-order antisymmetric $A_0$ guided wave has been selected as the optimal mode for detection of the ratcheting deformation. It is confirmed that the thermal ratcheting deformation can be detected by the measurement of transit time difference of circumferentially propagated $A_0$ guided waves.

Comparison of removal efficiency of diesel particulate filter with different measurement methods in a high-speed marine diesel engine (선박용 고속 디젤엔진에 적용한 디젤미립자 필터의 측정방법에 따른 입자상물질 저감효율 비교 연구)

  • Lee, Ik-Sung;Ko, Dong-Kyun;Moon, Gun-Feel;Nam, Youn-Woo;Kim, Shin-Han;Oh, Young-Taig
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.362-367
    • /
    • 2017
  • This study was conducted to compare the particulate removal efficiency of the developed diesel particulate filter using various measurement methods in a high-speed marine diesel engine. A four-stroke mechanical marine diesel engine is used for the test, which has a maximum output of 403 kW and is coupled to an AC dynamometer to control engine speed and load. The test was conducted based on four steady-state engine operating conditions of E3 engine test cycle for the measurement of PM and soot removal efficiency using partial dilution method considered as gravimetric method and filter smoke number method as light absorption method, respectively. As a result of the removal efficiency measurement according to the application of diesel particulate filter, particulate matter was reduced from 76% to 91% and the soot was reduced by more than 90% while meeting the permissible engine back pressure. From these results, the applicability of diesel particulate filter adopted in high-speed marine diesel engines could be confirmed. In addition, based on the result that the particulate removal efficiency varies with different measurement methods, the necessity of unification of these methods could be identified.

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.