• Title/Summary/Keyword: 회전유로

Search Result 56, Processing Time 0.031 seconds

Effect of channel height on the heat transfer coefficient of a rotation dimpled channel (딤플이 설치된 회전 유로의 높이가 열전달 계수에 미치는 영향에 대한 실험적 연구)

  • Kim, Seok-Beom;Lee, Yong-Jin;Choi, Eun-Yeong;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.30-36
    • /
    • 2010
  • The detailed heat transfer coefficients on a rotating dimpled channel were measured by the hue detection based the transient liquid crystal technique. The dimples were fabricated on the one side of the channel and the tested channel aspect ratio was 4, 6, and 12 with fixed channel width. Tested Reynolds number based on the channel hydraulic diameter was varied from 21,000 to 47,000. A stationary case and two different rotating conditions were tested so that the dimple fabricated surface became leading or trailing surface. For all rotating conditions, the minimum averaged heat transfer coefficient was measured for the channel aspect ratio of 6. Generally, the highest averaged heat transfer coefficient was observed for the highest aspect ratio cases due to increased dimple induced vortex strength.

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

Investigation on Neutron imaging method of bipolar plate for PEMFC (중성자 가시화를 통한 연료전지 분리판 평가)

  • Yoon, Jong-Jin;Cho, Kyu-Taek;Lee, Jong-Hyun;Ahn, Byung-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.14-16
    • /
    • 2008
  • 자동차 구동용 연료전지 스택에 적용된 분리판에 대하여 연료전지 내부의 수분분포 및 농도를 측정할 수 있는 중성자 가시화 기법을 이용하여 구조진단을 실시하여 유로의 분기부 및 180도 회전부의 수분 응축과 같은 국부적인 Flooding 현상과 분리판의 반응면적 전체에 대한 불균일한 수분분포를 확인하였다. 신규 개발 스택에 적용된 분리판은 이러한 구조진단 결과를 바탕으로 변형된 유로 도입을 통한 180도 회전부 제거, 냉각수 입구와 인접한 부분에서 교차하게 되는 수소 출구 부분의 수분응축에 의한 Flooding 현상을 완화하기 위한 냉각수 유로를 적용하여 중성자 가시화 기법을 통하여 동일한 가습조건에서 부하에 따른 분리판 반응면적 전체에 대한 수분분포를 조사하였다.

  • PDF

Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls (회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.

Measurement of the Detailed Heat Transfer Coefficient in the Rotating Dimpled Rectangular Channel (딤플이 설치된 회전 유로에서의 열전달 계수 분포 측정 연구)

  • Park, Seoung-Duck;Lee, Ki-Seon;Jeon, Chang-Soo;Kwak, Jae-Su;Jun, Young-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • The detailed heat transfer coefficient on a rotating dimpled channel were measured using the transient liquid crystal technique. The channel height to dimple diameter was 2, dimple center distance to dimple diameter was 1.5 and channel aspect ratio was 4. Tested Reynolds number based on the channel hydraulic diameter was varied from 15000 to 35000 and corresponding rotation number was ranged from 0.026 to 0.057. Results showed that the Coriolis force by rotation enhanced the heat transfer coefficient on the trailing surface. As the Reynolds number increased, i.e. rotation number decreased, the heat transfer coefficient increased and the thermal performance factor decreased.

Optimization of the Scraper Speed and Improvement of the Refrigerant Path for the Evaporator of the Soft Ice Cream Machine (소프트 아이스크림 제조기 증발기의 스크레이퍼 회전수 최적화 및 냉매 유로 개선)

  • Baek, Seung-Hyuk;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.8-14
    • /
    • 2017
  • Improvements in the standard of living and lifestyle have led to increased sales of frozen milk products, such as soft ice cream or slush. These frozen milk products are commonly made in a small refrigeration machine. In a soft ice cream machine, the freezer is composed of a concentric cylinder, where the refrigerant flows in the annul us and the ice cream is made in the cylinder by a rotating scraper. In this study, an optimization and performance evaluation were conducted on a soft ice cream machine having a freezer volume of 2.8 liters. The optimization was focused on the scraper rotation speed and the refrigerant path of the freezer. The measurements included the temperature, pressure and consumed power. At the optimized speed of 124 rpm, ice cream was produced in 6 minutes and 2 seconds, and the COP was 0.90. Through a flow visualization study using air-water, the refrigerant path was improved. The improved design reduced the ice cream making time significantly. The present results may be used for the optimization of other refrigeration cycles, including those of frozen food products.

A noise reduction structure for vacuum cleaner (진공청소기의 소음저감구조)

  • 박성수;황진성;손진승;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.73-79
    • /
    • 1994
  • (1) 진공청소기의 소음은 팬모타의 회전에 기인하는 유체소음과 진동소음이 주류를 이루며, 여기에 공기의 흡입과 배출에 따른 유체소음등이 복합되어 나타난다. (2) 진공청소기의 소음특성은 각 소음원들의 특성에 따라 주파수대역을 구분할 수 있으며, 기계적 진동음인 500Hz부근에서 peak를 보인다. (3) 소음의 저감을 위하여는 기존에 정립되어 있는 흡음, 차음, 감쇠, 방진, 유압유속감소 등의 기술을 종합적으로 활용하여 제한된 공간내에서 효과를 극대화할 수 있는 구조개발이 필요하며 본 연구에 적용하였다. (4) 본 연구의 '정음유로구조'는 차음효과, 유로길이 증가에 의한 감쇠효과, 흡음효과를 극대화할 수 있는 구조이다. (5) 팬모타의 진동모드는 회전축을 중심으로 원운동을 하며, 진동량은 흡입구와 뒷쪽 베어링부위가 가장 작으므로 회전축에 가까운 곳을 지지하는 것이 방진에 유리하다. (6) 본 구조에서 사용된 케이싱은 484Hz의 고유진동수 성분을 가지며 이는 모타와 공진할 우려가 있다. 이에 공진주파수 성분의 진동량이 가장 작은 전면과 후면의 중앙부를 지지하여 진동을 줄일 수 있었다. (7) 본체소음의 전반적인 저감에 따라 흡입구 등에서 발생하는 공기마찰소음의 영향이 상대적으로 커지며, 따라서 흡입구의 유선형 설계 및 누설소음의 흡음, 차폐 등의 역할이 중요한 관리 요소로 된다.

  • PDF

Development of Low Pressure Axial Compressor Performance Test Rig (1단 저압 축류압축기 성능시험리그 개발)

  • Yang, Jae-Jun;Bang, Jeong-Suk;Rhee, Byung-Ho;Park, Tae-Choon;Kang, Young-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.977-980
    • /
    • 2011
  • In this paper, explain to development of low pressure axial compressor performance test rig in KARI. Performance test rig consist of a entrance section, rotor, stator, shaft, rig housing, bearing housing and exit section. Test rig design structural optimization to rotor dynamics analysis of the simplified rotor-shaft assembly and flow analysis of entrance/exit section.

  • PDF

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation (냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향)

  • Kim, Kyung-Min;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.