• Title/Summary/Keyword: 회전요동

Search Result 21, Processing Time 0.011 seconds

Oxygen Transfer Rate from Liquid Free Surface in Reciprocally Shaking Vessel (왕복요동 교반조의 자유 표면에서의 산소흡수속도)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.276-280
    • /
    • 2021
  • The oxygen transfer rate at the liquid surface of the reciprocally shaking vessel was studied. The required power of the reciprocally shaking vessel was not proportional to the shaking frequency, unlike the rotational shaking vessel, and the liquid level suddenly fluctuated greatly at a certain frequency as the flow pattern in the vessel was a left and right wave flow different from that of the rotational shaking that has a rotational flow. The effect of the shaking frequency on the required power in the reciprocally shaking vessel was very complex, such as less power required than the rotational shaking vessel when the shaking frequency is more than 3 s-1, but the required power for the range of the generated rotational flow in the reciprocally shaking vessel could be correlated with the equation that was reported for the rotational shaking vessel. The kLa (mass transfer capacity coefficient) in the reciprocally shaking vessel also increased in a complex pattern because the required power for shaking was not consumed in a simple pattern, unlike kLa in the rotational shaking vessel, which increases linearly with increasing frequency. The kLa of the reciprocally shaking vessel was larger than the kLa of the rotational shaking vessel, and as the kLa value increased, the difference between them increased sharply. As a result, the oxygen transfer rate in the reciprocal motion was greater than that of the rotational motion, and could be correlated with the required power per unit volume.

Study on Fluid Flows in a Rectangular Container Subjected to a Background Rotation and a Rotational Oscillation (바탕회전하에 회전요동하는 직사각형용기 내의 유동에 관한 연구)

  • Park, Jae-Hyun;Suh, Yong-Kweon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.215-219
    • /
    • 2002
  • In this study, we show the numerical and the experimental results for fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the numerical computation, we used a parallel computer system of PC-cluster type. Attention is given to dependence of the flow patterns on the parameter change. It shows that the flow becomes in a periodic state at low Reynolds numbers and undergoes a transition to a chaotic motion at high Reynolds numbers. It also shows that the fluid motion tends to be depth-independent at ${\epsilon}$ up to 0.3 for Re lower than 5235.

  • PDF

Study on Fluid Flow in a Rectangular Container Subjected to a Background Rotation with a Rotational Oscillation Using PIV System (PIV를 이용한 바탕회전하에서 회전요동하는 직사각형 용기 내의 유동해석)

  • Suh, Yong-Kweon;Choi, Yoon-Hwan;Kim, Sung-Kyun;Lee, Du-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.845-851
    • /
    • 2000
  • In this paper, we show the numerical and the experimental results of two-dimensional fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the PlY experiment we apply a new algorithm, new three step search(NTSS), to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it well produces the experimental results at low e number.

Numerical Study on Fluid Flows and Stirring in a Circular Cylinder Subjected to Circulatory Oscillation (회전요동하는 원통내의 유동 및 교반특성을 위한 수치해석적 연구)

  • Kim, Hyeun Mihn;Suh, Yong Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.408-418
    • /
    • 1999
  • Incompressible flow inside a circular cylinder Including periodically oscillating free surface waves was studied primarily by using a numerical method. We developed a finite difference scheme based on the MAC method applicable to three-dimensional free-surface flows, and applied it to the present flow model to study tho flow characteristics as well as the fluid stirring. To verify the validity of our scheme, we performed a simple experiment for flow visualization. We found that the numerical results show a reasonable agreement with the observed flow patterns.

Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis (회전요동하는 원통내의 유동특성 - 이론적 해석)

  • Seo,Yong-Gwon;Kim, Hyeon-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.

Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Numerical Analysis and Experiment (회전요동하는 원통내의 유동특성 - 수치해석 및 실험)

  • Seo,Yong-Gwon;Park, Jun-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3970-3979
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal, circular oscillation is analyzed numerically and experimentally. The steady streaming velocities at the edges of the boundary layers on the bottom and side surfaces of the cylinder obtained in the previous paper are used as the boundary conditions in the governing equations for the steady flow motion in the interior region. The Stokes' drift velocity obtained in the previous paper also constitutes the Lagrangian velocity which is used in the momentum equations. It turns out that the interior steady flow is composed of one cell, ascending at the center and descending near the side surface, at the streaming Reynolds number 2500. However, at the streaming Reynolds number 25, the flow field is divided into two cells resulting in a descending flow at the center. The experimentally visualized flow patterns at the bottom surface agree well with the analytical solutions. The visualization experiment also confirms the flow direction as well as the center position of the cell obtained by the numerical solutions.

A study on the improvement of polishing surface using Oscillation-type tool and AE sensor (요동형 공구와 AE센서를 이용한 연마면 향상에 관한 연구)

  • 김정욱;김성렬;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1682-1687
    • /
    • 2003
  • Die polishing technology is very critical to determine quality and performance of the final products. Generally, the rotation-type tool is used most widely in the polishing process. However it is difficult to make the mirror surface, because the method using the rotation-type tool causes a lot of tiny scratch on the polished surface. This paper proposes a new method using the oscillation-type tool that reduces the scratch and improves the surface roughness. As result. the mirror surface was able to obtain by using the oscillation-type tool. AE is known to be closely related to material removal rate(MRR). As the surface is rougher, MRR gets larger and AE increase. The surface roughness can be indirectly estimated using the AE signal measured during automatic die polishing process. In this study. an AE sensor based monitoring system was developed to investigate the relation the level of AE RMS with the surface roughness during polishing process.

  • PDF

Geostrophic Flows in a Container with a Vertical Plate (수직격판이 있는 용기 내의 지균류)

  • Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.124-131
    • /
    • 1999
  • In this paper, we show the numerical and experimental results of two-dimensional fluid motions inside a rectangular container with a vertical plate subjected to a background rotation added by a rotational oscillation. In the PIV experiment we apply a new algorithm, NTSS, to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it showed good agreement with the experimental results at low ${\epsilon}$ number.

  • PDF

forming of High Density Bevel Gear for Industrial Machinery (산업기계용 고밀도 Bevel Gear 제품화를 위한 성형성 연구)

  • 임성주;윤덕재;최석우;박훈재;김승수;나경환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study is concerned with the cold forging of sintered preform by rotary forging process and direct powder compacting process. An experiment has been carried out using the rotary powder forging press (500kN) which had been designed and equipped with the rotational conical die inclined to the central axis of the press at certain angle The effect of process variables was observed and measured by several mechanical test, such as hardness distribution density, and microstructure of the specimens. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

The Study for Periodic Flows in a Rectangular Container - Experiment and Numerical Analysis (직사각형 용기 내의 주기 유동에 관한 연구 - 실험 및 수치 해석)

  • 박재현;서용권
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.202-207
    • /
    • 2002
  • 본 연구는 액체가 담긴 직사각형 용기를 회전시켜 spin-up 시킨 뒤 주기적인 외력을 가하여 요동운동 시킬 때, 용기 내에 나타나는 유동을 실험 및 수치해석 방법으로 조사한 것 이 다. 서와 김(1), 서 등(2)은 본 유동 모델의 2차원 수치 해석과 가시화 실험을 통하여 낮은 로스비 수(Ross number)와 레이놀즈 수(Reynolds number)의 유동에 적용할 수 있는 Ekman 분출모델을 제안하였다. (중략)

  • PDF