• Title/Summary/Keyword: 회전기계

Search Result 1,632, Processing Time 0.039 seconds

Modification of Physico-chemical Properties of Wheat Bran by Twin-screw Extrusion Process -1. Effect of Screw Configuration and Process Parameters on System Parameters- (이축 압출성형 공정에 의한 밀기울의 물리화학적 변형 -1. 스크류의 조합과 공정변수 조절에 따른 시스템 변수의 변화-)

  • Kim, Chong-Tai;Hwang, Jae-Kwan;Cho, Sung-Ja;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.404-413
    • /
    • 1995
  • System parameters (extrusion temperature, extrusion pressure, specific mechanical energy, mean residence time) were analysed on three different screw configurations during twin-screw extrusion of wheat bran. Experiments were conducted over a screw speed of $280{\sim}380\;rpm$, feed rate of $22{\sim}38\;kg/hr$ and moisture content of $17{\sim}33%$ using screws assembled with 3, 4, and 5 reverse screw elements (RSE) adjacent to the heating zone of the barrel. Extrusion temperature increased with increasing RSE but it decreased with increasing feed rate and moisture content. Decreasing the filling ratio of the screw resulted in a lower extrusion pressure, and increasing the length of the RSE gave similar results due to the higher temperature and lower viscosity of melted dough. It was also observed that increasing the feed rate and decreasing moisture content resulted in the reduced extrusion pressure. Specific mechanical energy (SME) decreased when the feed rate and moisture content increased, and SME increased when using RSE posses from 3 to 5. Screw configuration posses with 4 RSE yielded the longest RT, and the smaller the die hole, the higher the RT. In contrast, RT decreased when the feed rate increased. With increasing moisture content RT for 3 RSE increased, but that for 4 and 5 RSE decreased.

  • PDF

Loss and Heat Transfer Analysis for Reliability in High Speed and Low Torque Surface Mounted PM Synchronous Motors (고속·저토크용 표면부착형 영구자석 동기 전동기의 운전 안정성 확보를 위한 손실 및 열전달 특성 분석)

  • Choi, Moon Suk;Um, Sukkee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • It is essential to predict the coil temperature under over load and over speed conditions for reliability in high speed low torque surface mounted PM synchronous motors(SPM). In the present study, the losses and coil temperature are measured under rated condition and calculated under over speed and over load conditions in the three different motors with 35PN440, 25PN250 and 15HTH1000. The heat transfer modeling has been performed based on acquired losses and temperature. The difference of coil temperature between heat transfer modeling and experiment is less than 6.4% under no load, over speed and over load conditions. Subsequently, the coil temperature of the motor with 15HTH1000 is 84.4% of the coil temperature of the motor with 35PN440 when speed is 0.9 and load is 3.0. The output of motor with 15HTH1000 is 85.2% greater than the output of the motor with 35PN440 when the dimensionless coil temperature is 1.0.

Aerodynamic Design and Numerical Study of a Propane-Refrigerant Centrifugal Compressor for LNG Plant (LNG 플랜트용 프로판 냉매 원심압축기의 공력설계 및 전산해석적 연구)

  • Park, Joo-Hoon;Lee, Won-Suk;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Yoon-Pyo;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.781-787
    • /
    • 2011
  • We design a four-stage propane-refrigerant centrifugal compressor for an LNG plant. Using a commercial code, we aerodynamically designed the compressor at each design point of the corresponding stages. We estimated the one-dimensional aerodynamic design output and the three-dimensional shape of the impeller flow passage via three-dimensional flow analysis. In particular, we discuss in detail the flow characteristics of the impeller and the vaneless diffuser passages of the fourth-stage compressor in terms of the velocity fields, the pressure, and the entropy distributions of the flow passages. We include the flow effects of the tip clearance flow, because at this stage the rotating speed and total inlet pressure are higher than those at the other compressor stages are. We carried out performance tests of the designed compressor stages using propane as a refrigerant in the LNG cycle. The practical evaluation could lead to design enhancements in the future.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

Development of Variable Stiffness Soft Robot Hand for Improving Gripping Performance (그리핑 성능 향상을 위한 가변강성 소프트 로봇 핸드 개발)

  • Ham, KiBeom;Jeon, JongKyun;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.47-53
    • /
    • 2018
  • Various types of robotic arms are being used for industrial purposes, particularly with the small production of multi-products, and the importance of the gripper, which can be used in industrial fields, is increasing. This study evaluated a variable stiffness mechanism gripper that can change the stiffness using the nonlinearity of a flexible material. A prototype of the gripper was fabricated and examined to confirm the change in stiffness. The previous gripper was unable to grip objects in some situations with three variable stiffness mechanism. In addition, these mechanisms were not balanced and rarely rotated when the object was gripped. Therefore, a new type of gripper was needed to solve this problem. Inspired by the movements of the human palm and Venus Flytrap, a new type of a variable stiffness soft robot hand was designed. The possibility of grasping could be increased by interlocking the palm folding mechanism by pulling the tendon attached to the variable stiffness mechanism. The soft robotic hand was used to grasp objects of various shapes and weights more stably than the previous variable stiffness mechanism gripper. This new variable stiffness soft robot hand can be used selectively depending on the application and environment to be used.

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.

The Benefit of KT-2000 Knee Ligament Arthrometer in Diagnosis of Anterior Cruciate Ligament Injury (슬관절 전방 십자 인대 파열의 진단에 있어서 KT-2000 기기의 유용성)

  • Park, Jai-Hyung;Kim, Hyoung-Soo;Jung, Kwang-Gyu;Yoo, Jeong-Hyun
    • Journal of the Korean Arthroscopy Society
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2004
  • Purpose: In this study, we intended to ascertain the benefit of KT-2000 Knee arthrometer(KT-2000) in the diagnosis of ACL(Anterior cruciate ligament) injury by comparing the anterior displacement of normal knee with that of ACL deficient knee. Materials and Methods: We designated two examiners to measure the anterior displacement of the knee joint of 30 healthy individuals, using KT-2000, at 30$^{\circ}$ flexion setting of muscle full relaxation, contraction, 25$^{\circ}$ internal rotation and 25$^{\circ}$ external rotation and analyzed these results according to the variables and measured the preoperative anterior displacement of the ACL injured knee in the 30 patients who have gone through an arthroscopic ACL reconstruction later. Results: The results of examiner 1 are 6.5${\pm}$1.5 mm, 2.5${\pm}$0.9 mm, 4.8${\pm}$1.2 mm, 6.4${\pm}$1.3 mm in right knee and 5.6${\pm}$1.3 mm, 2.1${\pm}$0.8 mm, 4.5${\pm}$1.2 mm, 5.2${\pm}$1.3 mm in left knee, in order of muscle full relaxation, contraction, 25$^{\circ}$ internal rotation and 25$^{\circ}$ external rotation. The results of examiner 2 are 6.9${\pm}$1.2mm, 2.9${\pm}$1.1mm, 5.6${\pm}$1.6mm, 6.9${\pm}$1.5mm in right, 5.5${\pm}$1.7 mm,1.9${\pm}$0.9 mm, 5.1${\pm}$1.9 mm, 5.7${\pm}$1.6 mm in left knee, The side to side difference of examiner 1 in the setting of muscle relaxation is 0.9${\pm}$1.0 mm. The anterior displaement of ACL injured knee is average 11${\pm}$2.93 mm and difference of average 6.5${\pm}$2.31 mm form that of normal. In comparison between the right and left knees of healthy individuals, the both results of two examiners showed the statistical difference in the setting of muscle full relaxation but, the results showed the side to side difference below 2 mm in 25case(83%), 21case(70%) respectively and above 3 mm in just 1 case. In the comparison between the normal and ACL injured knees, the results show the statistical difference of the side to side difference in the setting of muscle relaxation(p<0.05). Conclusion: The KT-2000 result is affected by relaxation of muscles around knee, flexion angle of knee joint, rotation of tibia, the strength of displacing force, time of the test and physical factors as height and weight. However, the Accuracy of diagnosis of ACL injury by KT-2000 will increase if the examiner is skillful and the tests are made on the exact position of knee joint.

  • PDF

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.