DOI QR코드

DOI QR Code

Loss and Heat Transfer Analysis for Reliability in High Speed and Low Torque Surface Mounted PM Synchronous Motors

고속·저토크용 표면부착형 영구자석 동기 전동기의 운전 안정성 확보를 위한 손실 및 열전달 특성 분석

  • Choi, Moon Suk (School of Mechanical Engineering, Hanyang Univ.) ;
  • Um, Sukkee (School of Mechanical Engineering, Hanyang Univ.)
  • Received : 2013.10.15
  • Accepted : 2014.01.10
  • Published : 2014.03.01

Abstract

It is essential to predict the coil temperature under over load and over speed conditions for reliability in high speed low torque surface mounted PM synchronous motors(SPM). In the present study, the losses and coil temperature are measured under rated condition and calculated under over speed and over load conditions in the three different motors with 35PN440, 25PN250 and 15HTH1000. The heat transfer modeling has been performed based on acquired losses and temperature. The difference of coil temperature between heat transfer modeling and experiment is less than 6.4% under no load, over speed and over load conditions. Subsequently, the coil temperature of the motor with 15HTH1000 is 84.4% of the coil temperature of the motor with 35PN440 when speed is 0.9 and load is 3.0. The output of motor with 15HTH1000 is 85.2% greater than the output of the motor with 35PN440 when the dimensionless coil temperature is 1.0.

고속 저토크 표면 부착 영구자석형 동기 전동기의 운전 안정성 확보를 위하여 과속도 및 과부하 영역에서 전동기 코일 온도 예측이 필수적이다. 0.35mm 의 S18, S08 등급인 35PN440, 35PN220 그리고 0.15mm 의 저손실 재료인 15HTH1000 으로 제작된 고정자 철심을 포함하는 전동기의 정격 구동 조건에서 손실 및 코일 온도를 측정하여 과속도 및 과부하 영역의 손실 및 열저항을 예측하고 열전달 모델링을 수행하였다. 이의 검증을 위하여 무부하 과속도 영역에서 계산된 코일 온도와 실험값을 비교하여 6.4%이하로 일치하였다. 35PN440 을 적용한 전동기에 비하여 15HTH100 을 적용한 전동기는 무차원 회전속도 0.9, 부하율 3.0 일 때 철손실이 84.4% 로 감소하였고, 무차원 코일 온도 1.0 을 기준으로 출력이 85.2% 향상되었다. 정격 구동 영역의 손실 측정 및 열전달 모델링으로 과부하 및 과속도 영역에서 철심재질에 따른 코일 온도 변화 및 전동기 출력 개선량을 정확하게 예측할 수 있음을 알 수 있다.

Keywords

References

  1. Bianchi, N. and Bolognani, S., 2004, "Potentials and Limits of High-Speed PM Motors," IEEE Transactions on Industry Applications, Vol. 40, No. 6, pp. 1570-1578. https://doi.org/10.1109/TIA.2004.836173
  2. Bertotti G., 1988, "General Properties of Power Losses in Soft Ferromagnetic Materials," IEEE Transactions on Magnetics, Vol. 24, No. 1. pp. 621-630. https://doi.org/10.1109/20.43994
  3. Lorimer , W. L. and Lieu, D. K, 1999, "Method for Measuring and Characterizing Core Loss in a Motor," IEEE Transactions on Magnetics, Vol. 35, No. 4, pp. 2146-2152. https://doi.org/10.1109/20.774185
  4. Bertotti, G., Boglietti, A., Chiampi, M., Chiarabaglio, D., Fiorillo, F. and Lazzari, M., 1991, "An Improved Estimation of Iron Losses In Rotating Electrical Machines," IEEE Transactions on Magnetics, Vol. 27, No. 6, pp. 5008-5009.
  5. Binesti, D. and Ducreux, J.P., 1996, "Core Losses and Efficiency of Electrical Motors Using New Magnetic Materials," IEEE Transaction on Magnetics, Vol. 32, No. 5, pp. 4887-4889. https://doi.org/10.1109/20.539278
  6. Umans, S. D., 1996, "Steady-State, Lumped- Parameter Model for Capacitor-Run Single-phase Induction Motors", IEEE Transactionson Industry Applications, Vol.32, No.1, pp. 169-179. https://doi.org/10.1109/28.485829
  7. Son, D., 1999, "Ac Hysteresis Loop Measurement of Stator-Tooth in Induction Motor," IEEE Transaction on Magnetics, Vol. 35, No. 5, pp. 3931-3933. https://doi.org/10.1109/20.800712
  8. Kunihiro, N., Todaka, T. and Enokizono, M., 2011, "Loss Evaluation Fan Induction Motor Model Core by Vector Magnetic Characteristic Analysis," IEEE Transactions on Magnetics, Vol. 47, No.5, pp. 1098-1101. https://doi.org/10.1109/TMAG.2010.2072910
  9. Tatis, K. B., Kladas, A. G. and Tegopoulos, J. A., 2004, "Harmonic Iron Loss Determination in Laminated Iron Cores by Using a Particular 3-D Finite-Element Model," IEEE Transactions on Magnetics, Vol. 40, No. 2, pp. 860-863. https://doi.org/10.1109/TMAG.2004.825174
  10. Yamazaki, K. and Haruishi, Y., 2004, "Stray Load Loss Analysis of Induction Motor Comparison of Measurement Due to IEEE Standard 112 and Direct Calculation by Finite-Element Method," IEEE Transactions on Industry Applications, Vol. 40, No. 2, pp. 543-549. https://doi.org/10.1109/TIA.2004.824509
  11. Slemon, Gordon R. and . Liu. X., 1990, "Core Losses in Permanent Magnet Motors," IEEE Transaction on Magnetics, Vol. 26, No. 5, pp. 1653-1655. https://doi.org/10.1109/20.104480
  12. Sebastian, T., 1995, "Temperature Effects on Torque Production and Efficiency of PM Motors Using NdFeB Magnets," IEEE Transactionson Industry Applications, Vol.31, No.2, pp. 353-357. https://doi.org/10.1109/28.370284
  13. Manyage, Marubini J., and Pillay, P., 2007, "Low Voltage High Current PM Traction Motor Design Using Recent Core Loss Results," IEEE Industry Applications Conference, 42nd IAS Annual Meeting, pp. 1560-1566.
  14. Ionel, D. M., Popescu, M. and Dellinger, S. J., 2006, "On the Variation With Flux and Frequency of the Core Loss Coeffcients in Electrical Machines," IEEE Transactions on Industry Applications, Vol. 42, No. 3, pp. 658-667. https://doi.org/10.1109/TIA.2006.872941
  15. Wang, Z., Enomoto, Y., Ito, M., Masaki, R., Morinaga, S., Itabashi, H. and Tanigawa, S., 2010, "Development of a Permanent Magnet Motor Utilizing Amorphous Wound Cores," IEEE Transactions on Magnetics, Vol. 46, No. 2, pp. 570-573. https://doi.org/10.1109/TMAG.2009.2033350
  16. Guo, Y., Zhu, J., Lu, H., Lin, Z. and Li, Y., 2013, "Core Loss Calculation for Soft Magnetic Composite Electrical Machines," IEEE Transactions on Magnetics, Vol. 48, No. 11, pp. 3112-3115.
  17. Enomoto, Y., Ito, M., Koharagi, H. Masaki, R., Ohiwa, S., Ishihara, C. and Mita, M., 2005, "Evaluation of Experimental Permanent-Magnet Brushless Motor Utilizing New Magnetic Material for Stator Core Teeth," IEEE Transactions on Magnetics," IEEE Transactions on Magnetics, Vol. 41, No. 11, pp. 4304-4308. https://doi.org/10.1109/TMAG.2005.857943
  18. Zhang, P., Kwon, S. O. and Hong, J. P., "The Design and Analysis of a High Efficiency Permanent Magnet Reluctance Motor," 2006, International Conference on Electrical Machines and Systems(ICEMS), pp. 775-786.
  19. Huang, Y., Zhu, J., Guo, Y. and Hu, Q., 2007, "Core Loss and Thermal Behavior of High-Speed SMC Motor Based on 3-FEA," Electric Machines & Drives Conference, IEEE International, Vol. 2, pp.1569-1573.
  20. Popescu, M., Ionel, D. M. and Boglietti, A., 2010, "A General Model for Estimating the Laminated Steel Losses Under PWM Voltage Supply," IEEE Transactions on Industry Applications, Vol. 46, No. 4, pp. 1389-1396. https://doi.org/10.1109/TIA.2010.2049810
  21. Tsakani, L., Mthombeni, and Pillay, P., 2004, "Core Losses in Motor Laminations Exposed to High- Frequency or Nonsinusoidal Excitation," IEEE Transactions on Industry Applications, Vol. 40, No. 5, pp. 1325-1331. https://doi.org/10.1109/TIA.2004.834099
  22. Kaczmarek, R. and Amar, M., 1995, "A General Formula for Prediction of Iron Losses under Non- Sinusoidal Supply Voltage Waveform," IEEE Transactions on Magnetics, Vol. 31, No.5, pp.2505-2509.
  23. Barbisio, E., Fiorillo, F. and Ragusa, C., 2004, "Predicting Loss in Magnetic Steels under Arbitrary Induction Waveform and with Minor Hysteresis Loops," IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1810-1819. https://doi.org/10.1109/TMAG.2004.830510
  24. Li, W., Cao, J. and Zhang, X., 2010, "Electro thermal Analysis of Induction Motor With Compound Cage Rotor Used for PHEV," IEEE Transactions on Industrial Electronics, Vol. 57, No. 2, pp. 621-630.
  25. Sarkara, D. and Naskar, A. K., 2013, "Computation of Thermal Condition in an Induction Motor during Reactor Starting," International Journal of Electrical Power and Energy Systems, Vol. 44, pp. 938-948. https://doi.org/10.1016/j.ijepes.2012.08.004
  26. de Morais Sousa, K., Hafner, A. A., Carati, E. G., Kalinowski, H. J., and Cardozo da Silva, J. C., 2013, "Validation of Thermal and Electrical Model for Induction Motors using Fiber Bragg Gratings," Measurement, Vol. 46, pp. 1781-1790. https://doi.org/10.1016/j.measurement.2013.02.008
  27. Inamura, S., Sakai, T. and Sawa, K., 2003, "A Temperature Rise Analysis of Switched Reluctance Motor due to the Core and Copper Loss by FEM," IEEE Transactions on Magnetics, Vol. 39, No. 3, pp. 1554-1557. https://doi.org/10.1109/TMAG.2003.810358
  28. Chiba, A., Takano, Y., Takeno, M., Imakawa, T., Hoshi, N., Takemoto, M. and Ogasawara, S., 2011, "Torque Density and Effciency Improvements of a Switched Reluctance Moto Without Rare-Earth Material for Hybrid Vehicles," IEEE Transactions on Industry Applications, Vol. 47, No. 3, pp. 1240-1245. https://doi.org/10.1109/TIA.2011.2125770
  29. Demetriades, Georgios D., de la Parra H. Z., Andersson, E. and Olsson, H., 2010, "A Real-Time Thermal Model of a Permanent-Magnet Synchronous Motor," IEEE Transactions on Power Electronics, Vol.25, No.2.
  30. Fan, J., Zhang, C., Wang, Z., Dong, Y., Nino, C. E., Tariq A. R. and Strangas, E. G., 2010, "Thermal Analysis of Permanent Magnet Motor for the Electric Vehicle Application Considering Driving Duty Cycle," IEEE Transactions on Magnetics, Vol. 46, No. 6, pp. 2493-2496. https://doi.org/10.1109/TMAG.2010.2042043
  31. Huang, Y., Zhu, J. and Guo, Y., 2009, "Thermal Analysis of High-Speed SMC Motor Based on Thermal Network and 3-D FEA With Rotational Core Loss Included," IEEE Transactions on Magnetics, Vol. 45, No.10, pp.4680-4683. https://doi.org/10.1109/TMAG.2009.2023065
  32. Ishihara, N., Sanada, M. and Morimoto, S., 2010, "Structure of the PM Synchronous Motor for Low Iron Loss Characteristic in the High-speed Region," International Power Electronics Conference, pp. 1317-1321.
  33. Rahideha, A., Korakianitisa, T., Ruiza, P., Keebleb, T. and Rothman, M. T., 2010, "Very High Speed Slotless Permanent Magnet Motors : Analytical Modeling, Optimization, Design and Torque Measurement Methods," Journal of Magnetism and Magnetic Materials, Vol. 322, pp. 3680-3687. https://doi.org/10.1016/j.jmmm.2010.07.025
  34. Nategh, S., 2013, "Thermal Analysis and Management of High-Performance Electrical Machines," Ph.D. dissertation, Electrical Engineering, KTH School, Stockholm, Sweden
  35. Staton, D., Boglietti, A. and Cavagnino, A., 2011, "Solving the More Difficult Aspects of Electric Motor Thermal Analysis," IEEE Transactions on Magnetics, Vol. 47, No. 10, pp. 620-628. https://doi.org/10.1109/TMAG.2010.2100370
  36. Mi, C. C., Slemon, G. R. and Bonert, R., 2005, "Minimization of Iron Losses of Permanent Magnet Synchronous Machines," IEEE Transactions on Energy Conversion, Vol. 20, No. 1, pp. 121-127. https://doi.org/10.1109/TEC.2004.832091
  37. Shen, Q., Xu, F., Han, X., Tong, W. and Tang, R., 2011, "Investigation on the Variation of Iron Loss of Permanent Magnet Synchronous Traction Motor under Different Load Toque," International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5.
  38. Almandoz, G., Ugalde, G., Poza, J. and Escalada, A. J., 2012, "Chapter 8 Matlab-Simulink Coupling to Finite Element Software for Design and Analysis of Electrical Machines," MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications, Vol. 2, pp. 161-184.