• Title/Summary/Keyword: 회귀크리깅

Search Result 34, Processing Time 0.025 seconds

Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics (지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석)

  • Kim, Jongsung;Lee, Jungwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.551-557
    • /
    • 2016
  • Fusing satellite images and site-specific observations have potential to improve a predictive quality of environmental properties. However, the effect of the utilization of satellite images to predict soil properties in a wetland is still poorly understood. For the reason, block kriging and regression kriging were applied to a natural wetland, Water Conservation Area-2A in Florida, to compare the accuracy improvement of continuous models predicting total phosphorus in soils. Field observations were used to develop the soil total phosphorus prediction models. Additionally, the spectral data and derived indices from Landsat ETM+, which has 30 m spatial resolution, were used as independent variables for the regression kriging model. The block kriging model showed $R^2$ of 0.59 and the regression kriging model showed $R^2$ of 0.49. Although the block kriging performed better than the regession kriging, both models showed similar spatial patterns. Moreover, regression kriging utilizing a Landsat ETM+ image facilitated to capture unique and complex landscape features of the study area.

Estimating Forest Carbon Stocks in Danyang Using Kriging Methods for Aboveground Biomass (크리깅 기법을 이용한 단양군의 산림 탄소저장량 추정 - 지상부 바이오매스를 대상으로 -)

  • Park, Hyun-Ju;Shin, Hyu-Seok;Roh, Young-Hee;Kim, Kyoung-Min;Park, Key-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.16-33
    • /
    • 2012
  • The aim of this study is to estimate aboveground biomass carbon stocks using ordinary kriging(OK) which is the most commonly used type of kriging and regression kriging(RK) that combines a regression of the auxiliary variables with simple kriging. The analysis results shows that the forest carbon stock in Danyang is estimated at 3,459,902 tonC with OK and 3,384,581 tonC with RK in which the R-square value of the regression model is 0.1033. The result of RK conducted with sample plots stratified by forest type(deciduous, conifer and mixed) shows the lowest estimated value of 3,336,206 tonC and R-square value(0.35 and 0.18 respectively) is higher than that of when all sample plots used. The result of leave-one-out cross validation of each method indicates that RK with all sample plots reached the smallest root mean square error(RMSE) value(22.32 ton/ha) but the difference between the methods(0.23 ton/ha) is not significant.

Evaluating the Accuracy of Spatial Interpolators for Estimating Land Price (지가 추정을 위한 공간내삽법의 정확성 평가)

  • JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.125-140
    • /
    • 2017
  • Until recently, regression based spatial interpolation methods and Kriging based spatial interpolation methods have been largely used to estimate land price or housing price, but less attention has been paid on comparing the performance of these spatial interpolation methods. In this regard, this research applied regression based spatial interpolators and Kriging based spatial interpolators for estimating the land prices in Dalseo-gu, Daegu metropolitan city and evaluated the accuracy of eight spatial interpolators. OLS, SLM, SEM, and GWR were used as regression based spatial interpolators while SK, OK, UK, and CK were employed as Kriging based spatial interpolators. The global accuracy was statistically evaluated by RMSE, adjusted RMSE, and COD. The relative accuracy was visually compared by three-dimensional residual error map and scatterplot. Results from statistical and visual analyses indicate that GWR reflecting the spatial non-stationarity was a relatively more accurate spatial predictor to estimate land prices in the study area than SAR and Kriging based spatial interpolators considering the spatial dependence. The findings from this research will contribute to the secondary research into analyzing the urban spatial structure with land prices.

Unmanned AerialVehicles Images Based Tidal Flat Surface Sedimentary Facies Mapping Using Regression Kriging (회귀 크리깅을 이용한 무인기 영상 기반의 갯벌 표층 퇴적상 분포도 작성)

  • Geun-Ho Kwak;Keunyong Kim;Jingyo Lee;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.537-549
    • /
    • 2023
  • The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.

경남 밀양지역에서 지구통계기법을 이용한 최적의 지하수위 분포도 작성

  • 김태형;정상용;강동환;이민희;권해우;유인걸;유영준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.222-226
    • /
    • 2003
  • 경남 밀양지역의 대수층별 지하수위 분포 특성을 파악하기 위하여 2002년 봄에 총 503개 지하수공을 대상으로 지하수위를 측정하였다. 조사된 자료는 수치가 낮은 지점들에 집중되어 있어 정규분포를 이루지 않으나, 대수변환 된 자료는 정규분포를 나타내었다. 표고와 천층 및 심층 지하수위의 회귀 분석을 실시한 결과, 모두 정(+)의 상관관계가 높은 것으로 나타났다. 베리오그램 분석이나 교차 베리오그램 분석 결과, 원시자료보다 대수변환 된 자료가 반베리오그램이나 교차 반베리오그램의 적합선에 더 잘 맞는 것으로 나타났다. 교차 타당성 분석 결과, 천층 지하수위에 대한 정규크리깅 및 코크리깅 모델링에서 원시 자료가 대수변환 된 자료보다 추정치에 더 가깝게 나타났고, 심층 지하수위에 대한 정규크리깅 및 코크리깅 모델링에서는 원시 자료보다 대수변환 된 자료가 추정치에 더 가깝게 나타났다. 정규크리깅이나 코크리깅을 이용하여 작성된 대수층별 지하수위 등고선도에서 등고선의 분포는 대체로 비슷하지만, 코크리깅에 의해 작성된 지하수위 등고선도가 정규크리깅에 의한 지하수위 등고선도보다 더 정밀한 것으로 나타났다. 이것은 원시 자료뿐만 아니라 대수변환 된 자료를 이용한 지하수위 등고선도에서도 같은 결과가 도출되었다.

  • PDF

A Study on Spatial Downscaling of Satellite-based Soil Moisture Data (토양수분 위성자료의 공간상세화에 관한 연구)

  • Shin, Dae Yun;Lee, Yang Won;Park, Mun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.414-414
    • /
    • 2017
  • 토양수분은 지면환경에서 일어나는 수문 및 에너지 순환을 이해하는 데 있어 중요한 기상인자이다. 토양수분 현장관측은 땅속에 매설된 센서에 의해 상당히 정확하게 이루어지만, 관측점 수가 충분치 않아 공간적 연속성을 확보하지 못하는 어려움이 존재한다. 이에 광역적 및 연속적 관측이 가능한 마이크로파 위성센서가 토양수분 정보 획득을 위한 보조수단으로서 그 중요성이 부각되고 있다. 마이크로파 위성센서는 구름 등 기상조건의 제약을 받지 않으며, 1978년 이래 현재까지 여러 위성에 의해 25 km 및 10 km 해상도의 전지구 토양수분자료가 생산되어 왔다. 마이크로파 센서를 이용한 토양수분자료는 동일지점에 대하여 하루 2회 정도 산출되므로 적절한 시간분해능을 가지지만, 공간해상도가 최고 10 km로서 지역규모의 수문분석에 적용하기에는 충분치 않다. 이러한 토양수분자료의 공간해상도 문제 해결을 위하여 다양한 지면환경요소를 활용한 통계적 다운스케일링이 대안으로 제시되었다. 최근의 선행연구들은 대부분 방정식을 이용한 결합모형을 통해 통계적 다운스케일링을 수행하였는데, 회귀식과 같은 선형결합뿐 아니라 신경망이나 기계학습 등의 비선형결합에서도, 불가피하게 발생할 수밖에 없는 잔차(residual)로 인하여 다운스케일링 전후의 공간분포 패턴이 달라져버리는 문제를 안고 있었다. 회귀분석에 잔차의 공간내삽을 결합시킨 회귀크리깅(regression kriging)은 잔차보정을 통해 이러한 문제를 해결함으로써 다운스케일링 전후의 공간분포 일관성을 보장하는 기법이다. 이 연구에서는 회귀크리깅을 이용하여 일자별 AMSR2(Advanced Microwave Scanning Radiometer 2) 토양수분 자료를 10 km에서 1 km 해상도로 다운스케일링하고, 다운스케일링 전후의 자료패턴 일관성을 평가한다. 지면온도(LST), 지면온도상승률(RR), 식생온도건조지수(TVDI)는 일자별로 DB를 구축하였고, 식생지수(NDVI), 수분지수(NDWI), 지면알베도(SA)는 8일 간격으로 DB를 구축하였다. 이러한 8일 간격의 자료를 일자별로 변환하기 위하여 큐빅스플라인(cubic spline)을 이용하여 시계열내삽을 수행하였다. 또한 상이한 공간해상도의 자료는 최근린법을 이용하여 다운스케일링 목표해상도인 1 km에 맞도록 변환하였다. 우선 저해상도 스케일에서 추정치를 산출하기 위해서는 저해상도 픽셀별로 이에 해당하는 복수의 고해상도 픽셀을 평균화하여 대응시켜야 하며, 이를 통해 6개의 설명변수(LST, RR, TVDI, NDVI, NDWI, SA)와 AMSR2 토양수분을 반응변수로 하는 다중회귀식을 도출하였다. 이식을 고해상도 스케일의 설명변수들에 적용하면 고해상도 토양수분 추정치가 산출되는데, 이때 추정치와 원자료의 차이에 해당하는 잔차에 대한 보정이 필요하다. 저해상도 스케일로 존재하는 잔차를 크리깅 공간내삽을 통해 고해상도로 변환한 후 이를 고해상도 추정치에 부가해주는 방식으로 잔차보정이 이루어짐으로써, 다운스케일링 전후의 자료패턴 일관성이 유지되는(r>0.95) 공간상세화된 토양수분 자료를 생산할 수 있다.

  • PDF

Estimation of the VKT(vehicle kilometers traveled) in Urban Areas using Regression Kriging (회귀크리깅 기법을 이용한 도시부 차량주행거리 산정)

  • Kim, Hyunseung;Park, Dongjoo;Hong, Dahee;Heo, Taeyoung;Lee, Chulgee;Seo, Tae-Gyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.132-152
    • /
    • 2017
  • Network performance measure has been more and more important in transportation sector because traffic congestion has been steadily increasing in urban area. VKT is defined a sum of traveled distances of whole vehicles on the road network and one of the most important measure of effectiveness (MOE) for network performance measure. This paper aims to propose a methodology for estimating VKT and to apply it to calculate VKT in 6 major cities in Korea. We calculate VKT in 6 major cities by estimating traffic volumes on the uncollected road sections using regression kriging. It is expected that the proposed methodology can be applied various cities.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Comparison between Kriging and GWR for the Spatial Data (공간자료에 대한 지리적 가중회귀 모형과 크리깅의 비교)

  • Kim Sun-Woo;Jeong Ae-Ran;Lee Sung-Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.271-280
    • /
    • 2005
  • Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.

Application of kriging approach for estimation of water table elevation (Kriging 기법을 이용한 지하수위 분포 추정)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Lee, Sang-Ho;Hong, Chang-Soo;Choo, Suk-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.217-227
    • /
    • 2002
  • Geostatistical methods were used for the groundwater flow analysis on the ${\bigcirc}{\bigcirc}$ tunnel area. Linear regression analysis shows that the topographic elevation and ground water level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokriging have little differences in mountain areas. But, comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokring is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the north-west mountain areas to near valleys, and from the peak of the mountain to outside areas. In the design steps, the groundwater-level distribution is reasonably considered in the tunnel construction area by cokriging approach. And, geostatistics will provide quantitative information in the unknown groundwatrer-level area.

  • PDF