• Title/Summary/Keyword: 홴소음

Search Result 114, Processing Time 0.022 seconds

Study on the Optimal Shape of Low Noise, New Concept Fan for Refrigerator (냉장고용 저소음 신형상홴의 최적 형상에 관한 연구)

  • 정용규;김창준;백승조;전완호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.645-650
    • /
    • 2002
  • In this paper, new concept, low noise axial fan was developed. The fan was designed to operate at high-pressure condition inside the refrigerator. This fan - we call it Alpha fan - has small turbo blades at trailing edge of axial fan. These turbo blades make alpha fan operate at high pressure and low noise condition. In order to find out the optimal value of design parameters, 6-sigma method was used. The design parameters are ratio between inner and outer diameter, Height, Install angle and Install position of turbo blade. Optimal value of turbo blade was found out and the noise generated from this fan is reduced about 3dB(A).

  • PDF

Modal acoustic power of broadband noise by interaction of a cascade of flat-plate airfoils with inflow turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1467-1475
    • /
    • 2007
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

  • PDF

Characteristics of Modal Acoustic Power of Broadband Noise by Interaction of a Cascade of Flat-plate Airfoils with Inflow Turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워 특성)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

Analysis of Trail-Edge Noise from Sirocco Fans (시로코 홴 날개후단 소음예측)

  • Kim, Kyoung-Ho;Lee, Seung-Bae;Kim, Ji-Sung;Kwon, Yang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.396-401
    • /
    • 2000
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the solidity and the stagger angle upon the trailing edge noise from the circular arc-shaped blade of sirocco fan.

  • PDF

The Prediction of the Axial Flow Fan Noise by Using Through-Flow Analysis Method (관통유동 해석 방법을 이용한 축류형 홴의 소음예측)

  • Lee, Chan;Chung, Dong-Gyu;Hong, Soon-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.371-379
    • /
    • 2000
  • A noise prediction method of axial flow fan is developed by incorporating through-flow method and vortex shedding noise model. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and radiate as diploe distribution. The wake vortices are analyzed by combining Karman vortex street model and through-flow analysis results, and the vortex-induced fluctuating pressure on blade surface is calculated by thin airfoil theory. The predicted sound pressure levels and directivity patterns of fan noise by the present method are favorably compared with fan noise test data. Furthermore, the present method is shown to be very useful for predicting the aero-acoustic performance map of the fan operated at off-design point.

  • PDF

Design of the Plenum Chamber for Reducing Cooling Fan Noise of the Console for Combat Systems in a Naval Vessel (함정의 전투체계 콘솔 냉각 홴 소음저감을 위한 프리넘 챔버 설계)

  • Han, Hyung-Suk;Park, Mi-Yoo;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.529-535
    • /
    • 2011
  • Indoor noise is very important related to the morale and fighting power of the crew as well as environmental condition for them in a navel vessel. Especially, the crew members working in CIC (combat information center) and sonar equipment room require much more quiet environment condition. One of the most serious noise source in CIC is the cooling fan noise installed in the console of the combat system. Therefore, in this paper, the design of the plenum chamber is studied to reduce the noise of the fan from these consoles by numerical analysis and experiment.

Pattern Analysis of Noise Radiated from Household Refrigerator (가정용 냉장고에서 방사되는 소음의 패턴 분석)

  • Kong, Kyung-Soo;Jeong, Weui-Bong;Kim, Tae-Hoon;Shin, Dae-Sik;Ahn, Se-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.121-129
    • /
    • 2016
  • The noise pattern of a household refrigerator is dependent on the characteristics of its operating cycle which is repeated with a specific pattern depending on various parameters, such as room temperature and performance of its mechanical parts. Analysis of noise pattern is essential prior to evaluation of sound quality of a refrigerator. In this study, 14 units of refrigerator were classified into 4 types according to noise pattern and sort of mechanical part, which helps to analyze characteristics of refrigerator noise. Sound quality metrics(loudness, sharpness, roughness, and fluctuation strength) were calculated to compare noise pattern of the 4 types of refrigerator. The results of this study can be useful to decide noise performance of refrigerator.

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.

A Study on the Identification of Aeroacoustic Noise and Noise Reduction for a Vacuum Cleaner (청소기의 공력소음 특성 파악 및 저소음화에 관한 연구)

  • 전완호;백승조;김창준;허남건
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.633-638
    • /
    • 2002
  • The vacuum cleaner that has no dust bag generates very high level annoying noise. The dominant noise source is the 2$\^$nd/ BPF tone of the rotating impeller. In order to reduce the noise, we identify the acoustic characteristics and reduce the noise of the vacuum cleaner and centrifugal fan. The resonance phenomenon is observed in blade passages and we found out that the resonance frequency is very close to the 2$\^$nd/ BPF. In order to reduce this high-level peak noise, new impeller is designed in this paper. The trailing edge of new impeller is inclined and this makes the flow interactions between the rotating impeller and the stationary diffuser vane occurs with some phase shift. The performance of new impeller is similar to the old one but the overall SPL is reduced about 3.6dBA. The SPL of BPF is reduced about 6dBA and 2$\^$nd/ BPF is reduced about 20dBA. The vacuum cleaner, which uses newly developed centrifugal fan, generate more comfortable noise than the old model and the strong tonal sound was dramatically reduced.

  • PDF

Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF