• Title/Summary/Keyword: 황화

Search Result 1,244, Processing Time 0.04 seconds

Effects of Bioturbation of the Amphipod Monocorophium uenoi on the Vertical Distribution of Sulphides and Oxygen within Sulphides-Rich Sediments of Lake Sihwa (세가시육질꼬리옆새우(단각류)의 생물교란이 시화호 퇴적물 내 황화합물과 산소 농도의 수직적 분포에 미치는 영향)

  • Koo, Bon Joo;Kwon, Kae Kyeong;Shin, Sang-Ho;Je, Jong-Geel
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.79-89
    • /
    • 2006
  • The survival rate and tube number of Monocorophium uenoi, one of the dominant species in Lake Sihwa, was investigated under laboratory condition with salinity gradients (1, 5, 10, 15, 20, 25, 30, 35, 40‰). Another laboratory experiments were conducted to investigate the survival rate of Monocorophium uenoi in sulphide-rich sediment with oxic overlying water, and the effect of amphipod bioturbation on sulphide and oxygen profiles. The survival rate and tube-forming number of the amphipod were high in salinity range of 20 to 30‰. The amphipod survival rate was also high in sulphidic sediment when the water column was oxic. The amphipod bioturbation affected the oxygen and sulphide content in the sediment; oxygen conditions in the upper sediment layers were improved, and simultaneously the concentrations of sulphide were reduced. And their depth was clearly dependent on amphipod density. In Lake Sihwa, previously anoxic bottoms with sulphidic sediment during summer turn oxic with pycnocline disappearance during autumn. Amphipods seem to have the capability to quickly invade such areas, and their tubing of the sediment may play an important role in preparing the sediment for further recolonisation of other macrobenthos.

  • PDF

Analysis of Soil and Leaf Characteristics of Pear Orchards with Lime-Induced Chlorosis Leaves (배나무 엽 황화증상 발생 과원의 토양 및 엽 특성 분석)

  • In Bog Lee;Dae Ho Jung;Pyoung Ho Yi;Seung Tak Jeong;Yoon Kyeong Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.331-337
    • /
    • 2023
  • Physiological disorders in pear fruit are mainly caused by problems during the growing season, such as lack of calcium in the soil, poor drainage, low porosity, vigorous pruning, and excessive fruiting. In this study, soil physicochemical properties and leaf characteristics were analyzed in pear orchards in four regions of Korea where chlorosis symptoms occurred to determine the causes of chlorosis. The color of chlorotic leaves was diagnosed using the naked eye or SPAD and Hunter values. The soil of the chlorotic orchard had a significantly higher soil pH than that of the regular orchard. Although adequate soil depth was not significantly associated with chlorosis, combined with over-fertilization of the soil with lime, it could potentially impair plant iron uptake. Chlorotic leaves had significantly lower iron and calcium contents and significantly higher magnesium contents than those of regular leaves. Therefore, the intensive occurrence of chlorosis during secondary shoot development around June and July when it is hot and humid may be due to impaired iron and calcium absorption, leading to physiological disorders. To solve this problem, avoiding the over-application of lime and applying foliar fertilizers containing chelated iron is recommended.

Environmental Impact Assessment by Marine Cage Fish Farms: II. Estimation of Hydrogen Sulfide Oxidation Rate at $O_2$-H$_2$S Interface and Sulfate Reduction Rate in Anoxic Sediment Layer (해상 어류가두리양식장의 환경영향 평가: II. 가두리 양식장 퇴적물의 산소-황화수소 경계면에서 황화수소의 산화율 및 무산소 퇴적층에서 황산염 환원율 추정)

  • Lee, Jae-Seong;Kim, Kee-Hyun;Yu, Jun;Lee, Pil-Yong;Jung, Rae-Hong;Lee, Wong-Chan;Han, Jung-Jee;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.2
    • /
    • pp.64-72
    • /
    • 2004
  • We measured the vertical profiles of $O_2$, H$_2$S, and pH in sediment pore water beneath marine cage fish farms using a microsensor with a 25 ${\mu}{\textrm}{m}$ sensor tip size. The sediments are characterized by high organic material load. The oxygen consumption, hydrogen sulfide oxidation, and sulfate reduction rates in the microzonations (derived from the vertical distribution of chemical species concentration) were estimated by adapting a simple one-dimensional diffusion-reaction model. The oxygen penetration depth was 0.75 mm. The oxic microzonations were divided into upper and lower layers. Due to hydrogen sulfide oxidation within the oxic zone, the oxygen consumption rate was higher in the lower layer. The total oxygen consumption rate integrated with reaction zone depth was estimated to be 0.092 $\mu$mol $O_2$cm$^{-2}$ hr$^{-1}$ . The total hydrogen sulfide oxidation rate occurring within 0.7 mm thickness was estimated to be 0.030 $\mu$mo1 H$_2$S cm$^{-2}$ hr$^{-1}$ , and its turnover time in the oxic sediment layer was estimated to be about 2 minutes. This suggests that hydrogen sulfide was oxidized by both chemical and microbial processes in this zone. The molar consumption ratio, calculated to be 0.84, indicates that either other electron accepters exit on hydrogen sulfide oxidation, or elemental sulfur precipitation occurs near the $O_2$- H$_2$S interface. Total sulfate reduction flux was estimated to be 0.029 $\mu$mol cm$^{-2}$ hr$^{-1}$ , which accounted for more than 60% of total $O_2$ consumption flux. This result implied that the degradation of organic matter in the anoxic layer was larger than in the oxic layer.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

반응성 염료 염색

  • Geigy, Ciba
    • Textile Coloration and Finishing
    • /
    • v.2 no.1
    • /
    • pp.44-67
    • /
    • 1990
  • 오늘날 셀룰로오스 염색은 단지 5가지의 염료들이 사용되고 있다. Table 1에서와 같이 황화염료 및 직접염료가 세계적으로 가장 보편적으로 사용되고 있다. 그러나 선진국에서는 지난 수년간에 걸쳐 황화염료 및 디아조 염료의 사장점유율의 현저한 감소와(Table 2,3) 반응성 염료의 사장점유율의 증가가 있었다. 오늘날 사용되는 염료 분류는 3가지의 상이한 염색원리로 섬유에 적용된다.(중략)

  • PDF

Removal of Hydrogen Sulfide by Using Sodium Carbonate Impregnated Activated Carbon Fiber (탄산나트륨 첨착섬유활성탄을 이용한 황화수소의 제거)

  • Jung, Hun-Suck;Won, Yong Sun;Siregar, Devi Marietta;Mission, Sophie Kavugho;Lim, Jun-Heok
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2017
  • We prepared sodium carbonate impregnated activated carbon fiber and evaluated its availability for hydrogen sulfide removal by the comparison with the counterpart, sodium carbonate granular impregnated activated carbon. The sodium carbonate impregnated concentration and immersion duration were chosen as two primary parameters. First, the hydrogen sulfide adsorption capacity increased in proportion to the impregnated concentration up to 3 wt%, above which the sodium carbonate impregnated amount rarely showed an increase due to the pore filling effect for both cases. The optimal impregnated concentration was thus set to 3 wt%. Meanwhile, impregnated activated carbon fiber required only half of the immersion duration compared with granular impregnated activated carbon, while showing a 30% increase on the hydrogen sulfide removal capacity. The greater specific area of impregnated activated carbon fiber explained it. In conclusion, we evaluated advantage of preparation time and improved hydrogen sulfide adsorption capacity by impregnate sodium carbonate, which is capable of reacting with hydrogen sulfide chemically, onto the activated carbon fiber with improved specific area.

Biofilter Treatment of Waste Air Containing Malodor and VOC: 2. Transient Behavior of Biofilter with Improved Design to Eliminate Malodor and VOC (악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 2. 개선된 바이오필터설계에 의한 악취 및 VOC 제거거동)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.136-143
    • /
    • 2013
  • In this study, both transient behaviors of a biofilter system with improved design and a conventional biofilter were observed to perform the treatment of waste air containing malodor and volatile organic compound (VOC). Their behaviors of removal efficiency and treated concentration of malodor and VOC were compared each other. During 1st~7th stages of improved biofilter system operation it was observed that the order of treated ethanol concentration at each sampling port was switched due to the difference of microbe-population-distribution in spite of the difference of biofilter effective height. However, at 8th stage of its operation, the order of treated ethanol concentration at each sampling port was consistent to the order of biofilter effective height at each sampling port. The same was applied to the case of hydrogen sulfide, even though the difference of switched treated-hydrogen sulfide-concentrations was less than that of switched treated-ethanol-concentrations. The ethanol-removal efficiency of the biofilter system with improved design was ca. 96%, which was greater by 2% than that of the conventional biofilter. The transient behavior of treated hydrogen sulfide concentration of both biofilters were similar to each other. However, the concentration of hydrogen sulfide treated by the biofilter system with improved design was observed lower than that by the conventional biofilter. The hydrogen sulfide-removal efficiency of the biofilter system with improved design was higher by ca. 2% than that of the conventional biofilter. Therefore, the hydrogen sulfide-removal efficiency of the biofilter system with improved design was observed to be enhanced by the same as its ethanol-removal efficiency.

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (Ⅳ). Continuous-Automated Determination of Sulfide Ion Using Tubular PVC Membrane Type pH Electrode (용해기체 분석용 기체감응막 이온선택성 전극 (제 4 보) 관형 PVC막 pH전극을 이용한 황화이온의 연속 · 자동화 정량)

  • Lee Heung Lark;Bae Zun Ung;Oh Sang-Hyub
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.638-643
    • /
    • 1992
  • The analytical response properties of two types of continuous flow-through electrode system as fulfide ion detectors are examined and directly compared their reponse characteristics under the optimal conditions. In both detection systems, observed peak potentials are logarithmically related to the sulfide ion concentration and at least twenty samples per hour can be determined. In the pH electrode method, the pH of the flowing recipient stream leaving the dialyzer was monitored. The designed system involves the use of continuous flow gas dialyzer in conjunction with the tubular polymer membrane electrode. In this method, optimal experimental conditions are recipient of mixture of $5.0 {\times} 10^{-5} M NaOH + 5.0 {\times} 10^{-3} M$ NaCl and diluent of 0.10 M $H_2SO_4$, and all flow rates of recipient stream, diluent stream, and sample are 1.0 ml/min. In the sulfide ion electrode method, a commercially available sulfide ion-selective electrode was used to detect sulfide ion in the flow-through cell. The optimal flow rates of sulfide anti-oxidant buffer (3.5 g ascorbic acid and 7.6 g $Na_2EDTA$ dissolved in 1.0 M NaOH solution 1 l) and sample were 1.4 ml/min and 1.0 ml/min, respectively.

  • PDF